Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

Acharya, S. ; Basu, S. LU orcid ; Christiansen, P. LU ; Hansen, J. LU orcid ; Iversen, K.E. LU orcid ; Matonoha, O. LU ; Nepeivoda, R. LU orcid ; Ohlson, A. LU ; Silvermyr, D. LU orcid and Staa, J. LU , et al. (2024) In Journal of High Energy Physics 2024(9).
Abstract
A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson KS0 and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (“trigger” particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s = 5.02 TeV and s = 13 TeV using the ALICE detector at the LHC. The per-trigger yields of KS0 and Ξ± are dominated by the... (More)
A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson KS0 and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (“trigger” particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s = 5.02 TeV and s = 13 TeV using the ALICE detector at the LHC. The per-trigger yields of KS0 and Ξ± are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/KS0 yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ± with respect to KS0 is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The KS0 and Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely Pythia8.2 with the Monash tune, Pythia8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of KS0 and Ξ±. © The Author(s) 2024. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Hadron-Hadron Scattering, Particle and Resonance Production, Particle Correlations and Fluctuations
in
Journal of High Energy Physics
volume
2024
issue
9
article number
204
publisher
Springer
external identifiers
  • scopus:85205502715
ISSN
1029-8479
DOI
10.1007/JHEP09(2024)204
language
English
LU publication?
yes
id
f765cbc5-4975-4967-813f-9d8df46b65ed
date added to LUP
2025-08-28 10:29:49
date last changed
2025-08-28 10:29:49
@article{f765cbc5-4975-4967-813f-9d8df46b65ed,
  abstract     = {{A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson KS0 and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (“trigger” particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s = 5.02 TeV and s = 13 TeV using the ALICE detector at the LHC. The per-trigger yields of KS0 and Ξ± are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/KS0 yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ± with respect to KS0 is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The KS0 and Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely Pythia8.2 with the Monash tune, Pythia8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of KS0 and Ξ±. © The Author(s) 2024.}},
  author       = {{Acharya, S. and Basu, S. and Christiansen, P. and Hansen, J. and Iversen, K.E. and Matonoha, O. and Nepeivoda, R. and Ohlson, A. and Silvermyr, D. and Staa, J. and Vislavicius, V. and Zurlo, N.}},
  issn         = {{1029-8479}},
  keywords     = {{Hadron-Hadron Scattering; Particle and Resonance Production; Particle Correlations and Fluctuations}},
  language     = {{eng}},
  number       = {{9}},
  publisher    = {{Springer}},
  series       = {{Journal of High Energy Physics}},
  title        = {{Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations}},
  url          = {{http://dx.doi.org/10.1007/JHEP09(2024)204}},
  doi          = {{10.1007/JHEP09(2024)204}},
  volume       = {{2024}},
  year         = {{2024}},
}