Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The design of a trimodal broadside antenna element for compact massive MIMO arrays : Utilizing the Theory of Characteristic Modes

Chiu, Chi Yuk ; Shen, Shanpu ; Lau, Buon Kiong LU and Murch, Ross (2020) In IEEE Antennas and Propagation Magazine 62(6). p.46-61
Abstract
Massive multiple-input multiple-output (MIMO) arrays are becoming critical elements in cellular base station infrastructure. We utilize the theory of characteristic modes (TCM) to design a novel tri-modal broadside antenna element which is suitable for the construction of compact massive MIMO
arrays. The proposed antenna element consists of three ports which is formed by reviewing an existing compact two-port Y-shaped patch antenna from a TCM perspective. Using this perspective the Y-shaped antenna is modified into a snowflake-shaped patch antenna and excited by three ports via capacitive coupling. The advantage of the design approach is that the size of the three-port antenna is approximately the same as a conventional dual-polarized... (More)
Massive multiple-input multiple-output (MIMO) arrays are becoming critical elements in cellular base station infrastructure. We utilize the theory of characteristic modes (TCM) to design a novel tri-modal broadside antenna element which is suitable for the construction of compact massive MIMO
arrays. The proposed antenna element consists of three ports which is formed by reviewing an existing compact two-port Y-shaped patch antenna from a TCM perspective. Using this perspective the Y-shaped antenna is modified into a snowflake-shaped patch antenna and excited by three ports via capacitive coupling. The advantage of the design approach is that the size of the three-port antenna is approximately the same as a conventional dual-polarized patch antenna, hence allowing 50% more antenna elements for the same array aperture. By cutting the ground plane into a hexagonal shape, multiple of the proposed three-port canonical antennas are concatenated together to form 21- and 102-port massive MIMO arrays with all radiation patterns pointing in the broadside direction. Key performance characteristics of the massive MIMO arrays, such as
the Hermitian product of the simulated massive MIMO channel and mutual coupling, validate the effectiveness of the compact design. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
IEEE Antennas and Propagation Magazine
volume
62
issue
6
pages
16 pages
publisher
IEEE Computer Society
external identifiers
  • scopus:85077376060
ISSN
1045-9243
DOI
10.1109/MAP.2019.2958515
project
Optimal MIMO Terminal Antennas for 5G and Beyond
language
English
LU publication?
yes
id
f8af6768-09d2-4dfb-956a-33bf465fe8c2
date added to LUP
2020-01-17 13:47:37
date last changed
2024-01-31 14:52:37
@article{f8af6768-09d2-4dfb-956a-33bf465fe8c2,
  abstract     = {{Massive multiple-input multiple-output (MIMO) arrays are becoming critical elements in cellular base station infrastructure. We utilize the theory of characteristic modes (TCM) to design a novel tri-modal broadside antenna element which is suitable for the construction of compact massive MIMO<br/>arrays. The proposed antenna element consists of three ports which is formed by reviewing an existing compact two-port Y-shaped patch antenna from a TCM perspective. Using this perspective the Y-shaped antenna is modified into a snowflake-shaped patch antenna and excited by three ports via capacitive coupling. The advantage of the design approach is that the size of the three-port antenna is approximately the same as a conventional dual-polarized patch antenna, hence allowing 50% more antenna elements for the same array aperture. By cutting the ground plane into a hexagonal shape, multiple of the proposed three-port canonical antennas are concatenated together to form 21- and 102-port massive MIMO arrays with all radiation patterns pointing in the broadside direction. Key performance characteristics of the massive MIMO arrays, such as<br/>the Hermitian product of the simulated massive MIMO channel and mutual coupling, validate the effectiveness of the compact design.}},
  author       = {{Chiu, Chi Yuk and Shen, Shanpu and Lau, Buon Kiong and Murch, Ross}},
  issn         = {{1045-9243}},
  language     = {{eng}},
  number       = {{6}},
  pages        = {{46--61}},
  publisher    = {{IEEE Computer Society}},
  series       = {{IEEE Antennas and Propagation Magazine}},
  title        = {{The design of a trimodal broadside antenna element for compact massive MIMO arrays : Utilizing the Theory of Characteristic Modes}},
  url          = {{https://lup.lub.lu.se/search/files/82490507/APMag_R1_v18.pdf}},
  doi          = {{10.1109/MAP.2019.2958515}},
  volume       = {{62}},
  year         = {{2020}},
}