Advanced

Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples.

Anttu, Nicklas LU ; Heurlin, Magnus LU ; Borgström, Magnus LU ; Pistol, Mats-Erik LU ; Xu, Hongqi LU and Samuelson, Lars LU (2013) In Nano Letters 13(6). p.2662-2667
Abstract
The physical, chemical, and biological properties of nanostructures depend strongly on their geometrical dimensions. Here we present a fast, noninvasive, simple-to-perform, purely optical method that is capable of characterizing nanostructure dimensions over large areas with an accuracy comparable to that of scanning electron microscopy. This far-field method is based on the analysis of unique fingerprints in experimentally measured reflectance spectra using full three-dimensional optical modeling. We demonstrate the strength of our method on large-area (millimeter-sized) arrays of vertical InP nanowires, for which we simultaneously determine the diameter and length as well as cross-sample morphological variations thereof. Explicitly, the... (More)
The physical, chemical, and biological properties of nanostructures depend strongly on their geometrical dimensions. Here we present a fast, noninvasive, simple-to-perform, purely optical method that is capable of characterizing nanostructure dimensions over large areas with an accuracy comparable to that of scanning electron microscopy. This far-field method is based on the analysis of unique fingerprints in experimentally measured reflectance spectra using full three-dimensional optical modeling. We demonstrate the strength of our method on large-area (millimeter-sized) arrays of vertical InP nanowires, for which we simultaneously determine the diameter and length as well as cross-sample morphological variations thereof. Explicitly, the diameter is determined with an accuracy better than 10 nm and the length with an accuracy better than 30 nm. The method is versatile and robust, and we believe that it will provide a powerful and standardized measurement technique for large-area nanostructure arrays suitable for both research and industrial applications. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Nano Letters
volume
13
issue
6
pages
2662 - 2667
publisher
The American Chemical Society
external identifiers
  • wos:000320485100055
  • pmid:23635045
  • scopus:84879116413
ISSN
1530-6992
DOI
10.1021/nl400811q
language
English
LU publication?
yes
id
f99233f6-fcf9-44e7-b369-975c1c00524c (old id 3805047)
date added to LUP
2013-06-15 17:24:20
date last changed
2019-05-26 03:11:57
@article{f99233f6-fcf9-44e7-b369-975c1c00524c,
  abstract     = {The physical, chemical, and biological properties of nanostructures depend strongly on their geometrical dimensions. Here we present a fast, noninvasive, simple-to-perform, purely optical method that is capable of characterizing nanostructure dimensions over large areas with an accuracy comparable to that of scanning electron microscopy. This far-field method is based on the analysis of unique fingerprints in experimentally measured reflectance spectra using full three-dimensional optical modeling. We demonstrate the strength of our method on large-area (millimeter-sized) arrays of vertical InP nanowires, for which we simultaneously determine the diameter and length as well as cross-sample morphological variations thereof. Explicitly, the diameter is determined with an accuracy better than 10 nm and the length with an accuracy better than 30 nm. The method is versatile and robust, and we believe that it will provide a powerful and standardized measurement technique for large-area nanostructure arrays suitable for both research and industrial applications.},
  author       = {Anttu, Nicklas and Heurlin, Magnus and Borgström, Magnus and Pistol, Mats-Erik and Xu, Hongqi and Samuelson, Lars},
  issn         = {1530-6992},
  language     = {eng},
  number       = {6},
  pages        = {2662--2667},
  publisher    = {The American Chemical Society},
  series       = {Nano Letters},
  title        = {Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples.},
  url          = {http://dx.doi.org/10.1021/nl400811q},
  volume       = {13},
  year         = {2013},
}