Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Current Vaccination Strategies for Prostate Cancer

Joniau, Steven ; Abrahamsson, Per-Anders LU ; Bellmunt, Joaquim ; Figdor, Carl ; Hamdy, Freddie ; Verhagen, Paul ; Vogelzang, Nicholas J. ; Wirth, Manfred ; Van Poppel, Hendrik and Osanto, Susanne (2012) In European Urology 61(2). p.290-306
Abstract
Context: The first therapeutic cancer vaccine demonstrating effectiveness in a phase 3 study was approved by the US Food and Drug Administration on 29 April 2010. The pivotal trial demonstrated overall survival (OS) benefit in patients treated with antigen-loaded leukapheresis cells compared with a control infusion. Results of other prostate cancer (PCa) vaccination strategies are awaited, as this approach may herald a new era in the care for patients with advanced PCa. Objective: Consider effectiveness and safety of vaccination strategies in the treatment of PCa. Evidence acquisition: We searched three bibliographic databases (January 1995 through October 2010) for randomised phase 2 and 3 studies of vaccination strategies for PCa based... (More)
Context: The first therapeutic cancer vaccine demonstrating effectiveness in a phase 3 study was approved by the US Food and Drug Administration on 29 April 2010. The pivotal trial demonstrated overall survival (OS) benefit in patients treated with antigen-loaded leukapheresis cells compared with a control infusion. Results of other prostate cancer (PCa) vaccination strategies are awaited, as this approach may herald a new era in the care for patients with advanced PCa. Objective: Consider effectiveness and safety of vaccination strategies in the treatment of PCa. Evidence acquisition: We searched three bibliographic databases (January 1995 through October 2010) for randomised phase 2 and 3 studies of vaccination strategies for PCa based on predetermined relevant Medical Subject Heading terms and free text terms. Evidence synthesis: Data from 3 randomised phase 3 and 10 randomised phase 2 vaccination trials are discussed with respect to clinical outcome in terms of progression-free survival and OS, toxicity, prostate-specific antigen (PSA) response, and immunologic response. Three phase 3 trials (D9901, D9902A, and D9902B) that enrolled a total of 737 patients, all controlled and double-blinded, tested the efficacy of sipuleucel-T. The largest of these three trials, called Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT), has demonstrated safety and effectiveness of sipuleucel-T (now marketed as Provenge) as measured by prolonged survival of 512 asymptomatic patients with metastatic castration-resistant PCa (mCRPC). The study showed a 4.1-mo median survival benefit in the sipuleucel-T vaccine-treated group compared with the control group (25.8 vs 21.7 mo; hazard ratio [HR]: 0.78; 95% confidence interval [CI], 0.62-0.98; p = 0.032) and extended 3-yr survival (31.7% vs 23.0%). In contrast, two phase 3 vaccination trials with a whole-tumour-cell mixture of two PCa cell lines (GVAX) and testing GVAX either alone or in combination with chemotherapy versus chemotherapy alone (VITAL1 and 2) were terminated prematurely based on futility and increased deaths. Other phase 2 vaccination trials testing different types of vaccines in castration-resistant PCa patients have been reported with variable outcomes. Notably, a controlled, double-blind, randomised phase 2 vaccine trial of PROSTVAC-VF, a recombinant viral vector containing complementary DNA encoding PSA, in 125 patients with chemotherapy-naive, minimally symptomatic mCRPC also demonstrated safety but no significant effect on the time to disease progression. In comparison with controls (n = 40), PROSTVAC-VF-treated patients (n = 82) experienced longer median extended 3-yr survival (30% vs 17%). In general, PCa vaccines are perceived to have less toxicity compared with current cytotoxic or targeted therapies. Evaluation of clinical efficacy of different vaccination strategies (eg, protein-, peptide-and DNA-based vaccines) in the context of properly designed and controlled phase 3 studies is warranted. Conclusions: Cancer vaccines represent a new paradigm in the treatment of PCa. The IMPACT trial showed improved survival but no difference in time to disease progression in mCRPC patients with minimal tumour burden. Observations in phase 2 and 3 trials pave the way for other vaccination approaches for this disease, raise questions regarding the most appropriate clinical trial designs, and underscore the importance of identifying biomarkers for antitumour effect to better implement such therapies. (C) 2011 European Association of Urology. Published by Elsevier B. V. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Cancer vaccines, Prostate neoplasms, Poxvirus vector vaccine, PROSTVAC-VF, Sipuleucel-T
in
European Urology
volume
61
issue
2
pages
290 - 306
publisher
Elsevier
external identifiers
  • wos:000298248700020
  • scopus:83955162888
  • pmid:22001436
ISSN
1873-7560
DOI
10.1016/j.eururo.2011.09.020
language
English
LU publication?
yes
id
fe070b99-ed39-4c1b-a746-c192f8d58859 (old id 2333686)
date added to LUP
2016-04-01 14:11:20
date last changed
2022-04-22 01:50:38
@article{fe070b99-ed39-4c1b-a746-c192f8d58859,
  abstract     = {{Context: The first therapeutic cancer vaccine demonstrating effectiveness in a phase 3 study was approved by the US Food and Drug Administration on 29 April 2010. The pivotal trial demonstrated overall survival (OS) benefit in patients treated with antigen-loaded leukapheresis cells compared with a control infusion. Results of other prostate cancer (PCa) vaccination strategies are awaited, as this approach may herald a new era in the care for patients with advanced PCa. Objective: Consider effectiveness and safety of vaccination strategies in the treatment of PCa. Evidence acquisition: We searched three bibliographic databases (January 1995 through October 2010) for randomised phase 2 and 3 studies of vaccination strategies for PCa based on predetermined relevant Medical Subject Heading terms and free text terms. Evidence synthesis: Data from 3 randomised phase 3 and 10 randomised phase 2 vaccination trials are discussed with respect to clinical outcome in terms of progression-free survival and OS, toxicity, prostate-specific antigen (PSA) response, and immunologic response. Three phase 3 trials (D9901, D9902A, and D9902B) that enrolled a total of 737 patients, all controlled and double-blinded, tested the efficacy of sipuleucel-T. The largest of these three trials, called Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT), has demonstrated safety and effectiveness of sipuleucel-T (now marketed as Provenge) as measured by prolonged survival of 512 asymptomatic patients with metastatic castration-resistant PCa (mCRPC). The study showed a 4.1-mo median survival benefit in the sipuleucel-T vaccine-treated group compared with the control group (25.8 vs 21.7 mo; hazard ratio [HR]: 0.78; 95% confidence interval [CI], 0.62-0.98; p = 0.032) and extended 3-yr survival (31.7% vs 23.0%). In contrast, two phase 3 vaccination trials with a whole-tumour-cell mixture of two PCa cell lines (GVAX) and testing GVAX either alone or in combination with chemotherapy versus chemotherapy alone (VITAL1 and 2) were terminated prematurely based on futility and increased deaths. Other phase 2 vaccination trials testing different types of vaccines in castration-resistant PCa patients have been reported with variable outcomes. Notably, a controlled, double-blind, randomised phase 2 vaccine trial of PROSTVAC-VF, a recombinant viral vector containing complementary DNA encoding PSA, in 125 patients with chemotherapy-naive, minimally symptomatic mCRPC also demonstrated safety but no significant effect on the time to disease progression. In comparison with controls (n = 40), PROSTVAC-VF-treated patients (n = 82) experienced longer median extended 3-yr survival (30% vs 17%). In general, PCa vaccines are perceived to have less toxicity compared with current cytotoxic or targeted therapies. Evaluation of clinical efficacy of different vaccination strategies (eg, protein-, peptide-and DNA-based vaccines) in the context of properly designed and controlled phase 3 studies is warranted. Conclusions: Cancer vaccines represent a new paradigm in the treatment of PCa. The IMPACT trial showed improved survival but no difference in time to disease progression in mCRPC patients with minimal tumour burden. Observations in phase 2 and 3 trials pave the way for other vaccination approaches for this disease, raise questions regarding the most appropriate clinical trial designs, and underscore the importance of identifying biomarkers for antitumour effect to better implement such therapies. (C) 2011 European Association of Urology. Published by Elsevier B. V. All rights reserved.}},
  author       = {{Joniau, Steven and Abrahamsson, Per-Anders and Bellmunt, Joaquim and Figdor, Carl and Hamdy, Freddie and Verhagen, Paul and Vogelzang, Nicholas J. and Wirth, Manfred and Van Poppel, Hendrik and Osanto, Susanne}},
  issn         = {{1873-7560}},
  keywords     = {{Cancer vaccines; Prostate neoplasms; Poxvirus vector vaccine; PROSTVAC-VF; Sipuleucel-T}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{290--306}},
  publisher    = {{Elsevier}},
  series       = {{European Urology}},
  title        = {{Current Vaccination Strategies for Prostate Cancer}},
  url          = {{http://dx.doi.org/10.1016/j.eururo.2011.09.020}},
  doi          = {{10.1016/j.eururo.2011.09.020}},
  volume       = {{61}},
  year         = {{2012}},
}