Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

CUSTOMIZED QUANTIFICATION OF HOST CELL PROTEIN WITH BIO-LAYER INTERFEROMETRY

Sjöblom, Eva LU (2020) KMBM05 20202
Applied Microbiology
Abstract
Host cell protein (HCP) is quantified in the purification steps of biopharmaceutical production and is part of ensuring the purity of the final drug product. The gold standard method for HCP quantification is enzyme-linked immunosorbent assay (ELISA), but a new approach is proposed here with fully customized bio-layer interferometry assays for yeast and chinese hamster ovary (CHO) cells.

The new method has been developed by proceeding from a kit assay, but exchanging and optimizing each step of the assay to ensure a fully customized assay with the maximum binding rates possible to maximize the sensitivity. Originally, 3,3'-diaminobenzidine (DAB) was used as a signal enhancer, but exchanging it to the less hazardous substrate... (More)
Host cell protein (HCP) is quantified in the purification steps of biopharmaceutical production and is part of ensuring the purity of the final drug product. The gold standard method for HCP quantification is enzyme-linked immunosorbent assay (ELISA), but a new approach is proposed here with fully customized bio-layer interferometry assays for yeast and chinese hamster ovary (CHO) cells.

The new method has been developed by proceeding from a kit assay, but exchanging and optimizing each step of the assay to ensure a fully customized assay with the maximum binding rates possible to maximize the sensitivity. Originally, 3,3'-diaminobenzidine (DAB) was used as a signal enhancer, but exchanging it to the less hazardous substrate 3-amino-9-ethylcarbazole (AEC) gave higher assay signals and better sensitivity.

The developed yeast HCP quantification assay showed the ability to quantify HCP levels in samples of different concentrations. The estimated precision and lower limit of quantification (LLOQ) were of promising values, comparable to the analytical parameters of the currently used ELISA. The bio-layer interferometry (BLI) approach has the ability to reduce assay time from ELISA's usual 2 days down to 2 hours and can be almost fully automized together with a liquid handler.

For pharmaceutical development, a faster HCP quantification could result in a faster feedback-loop allowing earlier adjustments to the purification process, and could be a great advantage for the aggressive deadlines that the biopharmaceutical discovery space experience. (Less)
Popular Abstract
Did you know that many pharmaceuticals today are produced using genetically modified bacteria? Also often in genetically modified mammalian cells, such as from the Chinese hamster's ovaries. This branch of pharmaceuticals is the fastest growing on the market and could for example be used for developing a vaccine candidate against COVID-19 or for producing insulin. In this study, a method for ensuring the purity of such pharmaceuticals has been developed.

The genes in a cell contain the instructions for how the cell should build proteins and other molecules. The active substance in pharmaceuticals is often a protein, and to make a cell produce a certain drug protein an extra gene is inserted into the DNA, for example by using the Nobel... (More)
Did you know that many pharmaceuticals today are produced using genetically modified bacteria? Also often in genetically modified mammalian cells, such as from the Chinese hamster's ovaries. This branch of pharmaceuticals is the fastest growing on the market and could for example be used for developing a vaccine candidate against COVID-19 or for producing insulin. In this study, a method for ensuring the purity of such pharmaceuticals has been developed.

The genes in a cell contain the instructions for how the cell should build proteins and other molecules. The active substance in pharmaceuticals is often a protein, and to make a cell produce a certain drug protein an extra gene is inserted into the DNA, for example by using the Nobel Prize awarded technology CRISP/Cas9. The cell produces the drug protein together with the rest of the molecules and proteins the cell needs to stay alive, which are called Host Cell Proteins or HCPs. They are considered impurities and are unwanted in the final drug product.

During production, the cells form a complex mixture with the HCPs and the drug protein. Before the drug can be used, it must go through a thorough purification process in multiple steps to ensure a high level of purity. But it is not enough to just purify the drug - its purity must also be proven. Throughout the purification process, the levels of remaining impurities are therefore closely monitored. This is strictly regulated by authorities all over the world, for example from the EU and the US. In this study, we have developed a new analytical method for quantifying one such group of impurities, the already mentioned HCPs.

Traditionally, a method called ELISA (Enzyme-Linked ImmunoSorbent Assay) is used, which can take up to 2 days and require several manual steps. ELISA is an immunoassay, meaning that antibodies are used for detecting a certain substance. Our new method is also antibody based but takes only 2 hours to perform and can be almost fully automized. The method is based on the Bio-Layer Interferometry technology, or BLI for short, which has probably never before been used for quantifying HCP from a customized drug production process. We have shown that customized HCP quantification BLI assays can be developed for different organisms, in particular yeast and Chinese hamster ovary cells. The precision and accuracy show promising results, almost reaching the goal of spanning as low as for the current ELISA. A faster and automized analysis creates a quicker feedback loop which can enable faster development of new pharmaceuticals.

Drugs produced in cells are vital for many people, but it is just as important that the drugs are pure and not hazardous. This new method allows us to analyze the purity of drugs in a quick and automatic way, and make sure that there is nothing left from that hamster ovary in the pills you take every morning. (Less)
Popular Abstract (Swedish)
Visste du att många läkemedel tillverkas av genmodifierade bakterier? Också ofta i genmodifierade celler från däggdjur, till exempel från kinesiska hamstrars äggstockar. Läkemedel producerade i celler är de snabbast växande på marknaden, och kan till exempel användas för att producera insulin eller ett COVID-19 vaccin. I denna studie har en ny metod utvecklats för att säkerställa att sådana läkemedel är rena och ofarliga.

Generna i en cell innehåller instruktioner för hur cellen ska bilda proteiner och andra molekyler. Den aktiva substansen i läkemedel är ofta proteiner, och för att cellen ska bilda ett visst läkemedelsprotein läggs en extra gen in i DNAt - till exempel med gensaxen CRISPR/Cas9 som tilldelades Nobelpriset i kemi 2020.... (More)
Visste du att många läkemedel tillverkas av genmodifierade bakterier? Också ofta i genmodifierade celler från däggdjur, till exempel från kinesiska hamstrars äggstockar. Läkemedel producerade i celler är de snabbast växande på marknaden, och kan till exempel användas för att producera insulin eller ett COVID-19 vaccin. I denna studie har en ny metod utvecklats för att säkerställa att sådana läkemedel är rena och ofarliga.

Generna i en cell innehåller instruktioner för hur cellen ska bilda proteiner och andra molekyler. Den aktiva substansen i läkemedel är ofta proteiner, och för att cellen ska bilda ett visst läkemedelsprotein läggs en extra gen in i DNAt - till exempel med gensaxen CRISPR/Cas9 som tilldelades Nobelpriset i kemi 2020. Cellen producerar då läkemedelsproteinet tillsammans med alla andra proteiner och molekyler den behöver för att leva, vilka kallas för värdcellsproteiner eller host cell proteins på engelska, förkortat HCP. De anses vara orenheter, och är oönskade i den slutgiltiga läkemedelsprodukten.

Under produktionen blandas cellerna, dess proteiner och läkemedlet i en enda sörja, vilket gör att allt som inte är läkemedelsmolekylen måste tvättas bort innan den kan användas. Men det är inte tillräckligt att rena upp läkemedlet - man måste också bevisa att det är så rent som man hävdar. Det gör man genom att analysera läkemedlet i olika delar av uppreningsprocessen för att se hur mycket orenheter det finns kvar, exempelvis HCP:er. Det är en sådan analys vi har fokuserat på i denna studien. Uppreningen är alltså väldigt viktig, och det ställs stora krav globalt på ett läkemedels renhet från myndigheter i exempelvis EU och USA.

Traditionellt används en metod som kallas ELISA (Enzyme-Linked ImmunoSorbent Assay), vilken tar upp till två dagar och kräver mycket manuellt arbete. Det är en så kallad immunanalys vilket betyder att man använder antikroppar för att mäta ett visst ämne. Vi har istället utvecklat en annan immunanalysmetod som tar två timmar och kan göras nästan helt automatiserad. Den är baserad på Bio-Layer Interferometry-tekniken, eller förkortat BLI, och har antagligen aldrig tidigare använts för att mäta HCP från ett specifikt läkemedels produktion. Vi har visat att man kan utveckla helt skräddarsydda analyser för olika organismer såsom kinesiska hamsterceller och jäst. Resultaten i denna studie talar för att den kan mäta HCP:er med samma precision och noggrannhet som dagens ELISA. En snabbare och automatiserad analysmetod skapar en effektivare feedback loop i uppreningsprocessen, vilket i sin tur gör att nya läkemedel kan utvecklas snabbare.

Läkemedel producerade i celler är livsviktiga mediciner för många människor, men det är minst lika viktigt att läkemedlena vi tar är rena och ofarliga. Därför behöver vi snabbt och automatisk kunna analysera orenheter i läkemedel för att se till att det inte finns kvar några bakteriebitar i tabletterna du tar varje morgon. (Less)
Please use this url to cite or link to this publication:
author
Sjöblom, Eva LU
supervisor
organization
course
KMBM05 20202
year
type
H2 - Master's Degree (Two Years)
subject
keywords
BLI, HCP, CHO, yeast, host cell protein, bio-layer interferometry, immunoassays, quantification, chinese hamster ovary, ELISA, applied microbiology, teknisk mikrobiologi
language
English
id
9032572
date added to LUP
2020-12-11 14:28:34
date last changed
2020-12-11 14:30:54
@misc{9032572,
  abstract     = {{Host cell protein (HCP) is quantified in the purification steps of biopharmaceutical production and is part of ensuring the purity of the final drug product. The gold standard method for HCP quantification is enzyme-linked immunosorbent assay (ELISA), but a new approach is proposed here with fully customized bio-layer interferometry assays for yeast and chinese hamster ovary (CHO) cells. 

The new method has been developed by proceeding from a kit assay, but exchanging and optimizing each step of the assay to ensure a fully customized assay with the maximum binding rates possible to maximize the sensitivity. Originally, 3,3'-diaminobenzidine (DAB) was used as a signal enhancer, but exchanging it to the less hazardous substrate 3-amino-9-ethylcarbazole (AEC) gave higher assay signals and better sensitivity.

The developed yeast HCP quantification assay showed the ability to quantify HCP levels in samples of different concentrations. The estimated precision and lower limit of quantification (LLOQ) were of promising values, comparable to the analytical parameters of the currently used ELISA. The bio-layer interferometry (BLI) approach has the ability to reduce assay time from ELISA's usual 2 days down to 2 hours and can be almost fully automized together with a liquid handler. 

For pharmaceutical development, a faster HCP quantification could result in a faster feedback-loop allowing earlier adjustments to the purification process, and could be a great advantage for the aggressive deadlines that the biopharmaceutical discovery space experience.}},
  author       = {{Sjöblom, Eva}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{CUSTOMIZED QUANTIFICATION OF HOST CELL PROTEIN WITH BIO-LAYER INTERFEROMETRY}},
  year         = {{2020}},
}