Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The Membrane Bound LRR Lipoprotein Slr, and the Cell Wall-Anchored M1 Protein from Streptococcus pyogenes Both Interact with Type I Collagen

Bober, Marta LU ; Mörgelin, Matthias LU ; Olin, Anders LU ; von Pawel-Rammingen, Ulrich and Collin, Mattias LU orcid (2011) In PLoS ONE 6(5).
Abstract
Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR) have been indentified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20-30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid). The streptococcal leucine rich (Slr) protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling,... (More)
Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR) have been indentified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20-30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid). The streptococcal leucine rich (Slr) protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein) and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1) and emm1 mutant strain (MC25) had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
6
issue
5
publisher
Public Library of Science (PLoS)
external identifiers
  • wos:000291097600047
  • pmid:21655249
  • scopus:79957793588
  • pmid:21655249
ISSN
1932-6203
DOI
10.1371/journal.pone.0020345
language
English
LU publication?
yes
id
a55be52d-94ce-4a0d-9ce8-9e263f2d418b (old id 1985175)
alternative location
http://www.ncbi.nlm.nih.gov/pubmed/21655249?dopt=Abstract
date added to LUP
2016-04-01 14:17:33
date last changed
2022-01-27 23:50:59
@article{a55be52d-94ce-4a0d-9ce8-9e263f2d418b,
  abstract     = {{Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR) have been indentified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20-30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid). The streptococcal leucine rich (Slr) protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein) and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1) and emm1 mutant strain (MC25) had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors.}},
  author       = {{Bober, Marta and Mörgelin, Matthias and Olin, Anders and von Pawel-Rammingen, Ulrich and Collin, Mattias}},
  issn         = {{1932-6203}},
  language     = {{eng}},
  number       = {{5}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS ONE}},
  title        = {{The Membrane Bound LRR Lipoprotein Slr, and the Cell Wall-Anchored M1 Protein from Streptococcus pyogenes Both Interact with Type I Collagen}},
  url          = {{https://lup.lub.lu.se/search/files/3893807/2172428.pdf}},
  doi          = {{10.1371/journal.pone.0020345}},
  volume       = {{6}},
  year         = {{2011}},
}