Advanced

Spectroelectrochemistry of Redox Enzymes

Christenson, Andreas LU (2006)
Abstract (Swedish)
Popular Abstract in Swedish

Det ljus (fotonflöde) som solen sänder ut är grunden för biologiskt liv. Med denna strålning överförs en del av den frigjorda energin från solen till jordens biosfär, där växterna tar upp de energirika fotonerna och omvandlar fotonenergin till kemisk energi. Den kemiska energin lagras sedan som energirika molekyler som transporteras runt i de biologiska systemen för att möjliggöra biologisk aktivitet.



I de studier som gjorts inom ramarna för denna avhandling, ingår undersökning av speciella redoxenzym (komplexa protein molekyler) och deras energinivåer. Vid mätning av dessa enzyms redox potentialer visar sig enzymens tendens att vilja oxideras eller reduceras.

... (More)
Popular Abstract in Swedish

Det ljus (fotonflöde) som solen sänder ut är grunden för biologiskt liv. Med denna strålning överförs en del av den frigjorda energin från solen till jordens biosfär, där växterna tar upp de energirika fotonerna och omvandlar fotonenergin till kemisk energi. Den kemiska energin lagras sedan som energirika molekyler som transporteras runt i de biologiska systemen för att möjliggöra biologisk aktivitet.



I de studier som gjorts inom ramarna för denna avhandling, ingår undersökning av speciella redoxenzym (komplexa protein molekyler) och deras energinivåer. Vid mätning av dessa enzyms redox potentialer visar sig enzymens tendens att vilja oxideras eller reduceras.



Potentialerna kan mätas spektroelektrokemiskt och för detta ändamål utvecklades en spektroelektrokemisk cell. Redoxenzym som teofylineoxidas, sulfitoxidas, bilirubinoxidas, laccas och komplex II studerades med hjälp av denna teknik. Då några av dessa enzymer är mycket komplexa studerades också hur elektronerna transporteras inom dessa stora enzym.



Intressanta enzyms mekanistiska beteende kunde följas och utvärderas. (Less)
Abstract
A low volume and long optical path spectroelectrochemical cell was constructed and tested in a number of applications such as detection of direct electron transfer (DET) between redox enzymes and gold electrodes, determination of the formal potentials of redox centres in proteins and enzymes, as well as mechanistic studies of heterogeneous and intermolecular electron transfer of copper oxidases and succinate:quinine oxidoreductase (Complex II). The existence of DET between enzymes and electrodes was demonstrated for theophylline oxidase, cytochrome P450 cam, laccase, bilirubin oxidase, sulphite oxidase and Complex II. Spectroelectrochemical investigations of the ET between blue multi-copper oxidases and gold electrodes demonstrated that... (More)
A low volume and long optical path spectroelectrochemical cell was constructed and tested in a number of applications such as detection of direct electron transfer (DET) between redox enzymes and gold electrodes, determination of the formal potentials of redox centres in proteins and enzymes, as well as mechanistic studies of heterogeneous and intermolecular electron transfer of copper oxidases and succinate:quinine oxidoreductase (Complex II). The existence of DET between enzymes and electrodes was demonstrated for theophylline oxidase, cytochrome P450 cam, laccase, bilirubin oxidase, sulphite oxidase and Complex II. Spectroelectrochemical investigations of the ET between blue multi-copper oxidases and gold electrodes demonstrated that the mechanism of heterogeneous ET of laccases on gold is completely different from that usually observed on carbon electrodes. At carbon electrodes laccases are electronically connected to the conducting electrode through the T1 copper centre. At gold surfaces, by contrast, the electronic connection of the laccase redox centre to the surface is established through the T2 copper centre. Such an ET connection between the gold surface and the T2 copper centre, severely disturbs the oxygen reduction reaction catalysed by laccase. Similar observation was made for two bilirubin oxidases. Spectroelectrochemical studies of Complex II in the gold capillary cell showed that DET for intact Complex II is realised through the heme center with a low redox potential, hemeL. The study of DET reactions in combination with specific ET mediators and inhibitors, suggested that a postulated proximal quinone binding site may indeed exist in the Complex II structure. Our spectroelectrochemical studies indicate that this quinone binding site seems to be closed when both high and low potential heme sites are reduced. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Heineman, William, Department of Chemistry, University of Cincinnati, OH, USA
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Elektrokemi, Electrochemistry, complex II, bilirubin oxidase, laccase, enzyme mechanism, redox potential, electron transfer, spectroelectrochemistry, redox enzymes, Spectroelectrochemical cell
pages
169 pages
publisher
Department of Analytical Chemistry, Lund University
defense location
Centre for Chemistry and Chemical Enginering, Sölvegatan 39, Lecture Hall B, Lund University, Lund, Sweden.
defense date
2006-12-08 13:15
ISBN
91-7422-135-3
language
English
LU publication?
yes
id
bd006b0c-2e7e-4a07-86ee-783be7baec13 (old id 541617)
date added to LUP
2007-10-12 15:19:35
date last changed
2016-09-19 08:45:06
@misc{bd006b0c-2e7e-4a07-86ee-783be7baec13,
  abstract     = {A low volume and long optical path spectroelectrochemical cell was constructed and tested in a number of applications such as detection of direct electron transfer (DET) between redox enzymes and gold electrodes, determination of the formal potentials of redox centres in proteins and enzymes, as well as mechanistic studies of heterogeneous and intermolecular electron transfer of copper oxidases and succinate:quinine oxidoreductase (Complex II). The existence of DET between enzymes and electrodes was demonstrated for theophylline oxidase, cytochrome P450 cam, laccase, bilirubin oxidase, sulphite oxidase and Complex II. Spectroelectrochemical investigations of the ET between blue multi-copper oxidases and gold electrodes demonstrated that the mechanism of heterogeneous ET of laccases on gold is completely different from that usually observed on carbon electrodes. At carbon electrodes laccases are electronically connected to the conducting electrode through the T1 copper centre. At gold surfaces, by contrast, the electronic connection of the laccase redox centre to the surface is established through the T2 copper centre. Such an ET connection between the gold surface and the T2 copper centre, severely disturbs the oxygen reduction reaction catalysed by laccase. Similar observation was made for two bilirubin oxidases. Spectroelectrochemical studies of Complex II in the gold capillary cell showed that DET for intact Complex II is realised through the heme center with a low redox potential, hemeL. The study of DET reactions in combination with specific ET mediators and inhibitors, suggested that a postulated proximal quinone binding site may indeed exist in the Complex II structure. Our spectroelectrochemical studies indicate that this quinone binding site seems to be closed when both high and low potential heme sites are reduced.},
  author       = {Christenson, Andreas},
  isbn         = {91-7422-135-3},
  keyword      = {Elektrokemi,Electrochemistry,complex II,bilirubin oxidase,laccase,enzyme mechanism,redox potential,electron transfer,spectroelectrochemistry,redox enzymes,Spectroelectrochemical cell},
  language     = {eng},
  pages        = {169},
  publisher    = {ARRAY(0x8265680)},
  title        = {Spectroelectrochemistry of Redox Enzymes},
  year         = {2006},
}