Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Copper-dependent autocleavage of glypican-1heparan sulfate by nitric oxide derived fromintrinsic nitrosothiols.

Ding, Kan LU ; Mani, Katrin LU orcid ; Cheng, Fang LU ; Belting, Mattias LU and Fransson, Lars-Åke LU (2002) In Journal of Biological Chemistry 277(36). p.33353-33360
Abstract
Cell-surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines [ [Belting, M., Borsig, L., Fuster, M.M., Brown, J.R., Persson, L., Fransson,L.-. and Esko, J.D. (2002) Proc. Natl. Acad. Sci. U.S.A., 99, 371-376] ]. Increased polyamine uptake correlates with an increased number of positively charged N-unsubstituted glucosamine units in the otherwise polyanionic heparan sulfate chains of glypican-1. During intracellular recycling of glypican-1 there is an NO-dependent deaminative cleavage of heparan sulfate at these glucosamine units, which would eliminate the positive charges [ [Ding, K., Sandgren, S., Mani, K., Belting, M. and Fransson, L.-. (2001) J. Biol. Chem., 276, 46779-46791] ]. Here, using both... (More)
Cell-surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines [ [Belting, M., Borsig, L., Fuster, M.M., Brown, J.R., Persson, L., Fransson,L.-. and Esko, J.D. (2002) Proc. Natl. Acad. Sci. U.S.A., 99, 371-376] ]. Increased polyamine uptake correlates with an increased number of positively charged N-unsubstituted glucosamine units in the otherwise polyanionic heparan sulfate chains of glypican-1. During intracellular recycling of glypican-1 there is an NO-dependent deaminative cleavage of heparan sulfate at these glucosamine units, which would eliminate the positive charges [ [Ding, K., Sandgren, S., Mani, K., Belting, M. and Fransson, L.-. (2001) J. Biol. Chem., 276, 46779-46791] ]. Here, using both biochemical and microscopic techniques, we have identified and isolated S-nitrosylated forms of glypican-1 as well as low-charged glypican-1 glycoforms containing heparan sulfate chains rich in N-unsubstituted glucosamines. The latter were converted to high-charged species upon treatment of cells with 1 mM L-ascorbate, which releases NO from nitrosothiols, resulting in deaminative cleavage of heparan sulfate at the N-unsubstituted glucosamines. S-nitrosylation and subsequent deaminative cleavage were abrogated by inhibition of a Cu 2+ /Cu + -redox cycle. Under cell-free conditions, purified, S-nitrosylated glypican-1 was able to autocleave its heparan sulfate chains when NO-release was triggered by L-ascorbate. The heparan sulfate fragments generated in cells during this auto-catalytic process contained terminal anhydromannose residues. We conclude that the core protein of glypican-1 can slowly accumulate NO as nitrosothiols while Cu 2+ is reduced to Cu +. Subsequent release of NO results in efficient deaminative cleavage of the heparan sulfate chains attached to the same core protein while Cu + is oxidized to Cu 2+. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Biological Chemistry
volume
277
issue
36
pages
33353 - 33360
publisher
American Society for Biochemistry and Molecular Biology
external identifiers
  • wos:000177859000124
  • scopus:0037031909
ISSN
1083-351X
DOI
10.1074/jbc.M203383200
language
English
LU publication?
yes
id
03a98506-d2c7-40cd-a203-ba841b823f11 (old id 109038)
alternative location
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12084716&dopt=Abstract
date added to LUP
2016-04-01 11:52:03
date last changed
2023-09-01 10:17:54
@article{03a98506-d2c7-40cd-a203-ba841b823f11,
  abstract     = {{Cell-surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines [ [Belting, M., Borsig, L., Fuster, M.M., Brown, J.R., Persson, L., Fransson,L.-. and Esko, J.D. (2002) Proc. Natl. Acad. Sci. U.S.A., 99, 371-376] ]. Increased polyamine uptake correlates with an increased number of positively charged N-unsubstituted glucosamine units in the otherwise polyanionic heparan sulfate chains of glypican-1. During intracellular recycling of glypican-1 there is an NO-dependent deaminative cleavage of heparan sulfate at these glucosamine units, which would eliminate the positive charges [ [Ding, K., Sandgren, S., Mani, K., Belting, M. and Fransson, L.-. (2001) J. Biol. Chem., 276, 46779-46791] ]. Here, using both biochemical and microscopic techniques, we have identified and isolated S-nitrosylated forms of glypican-1 as well as low-charged glypican-1 glycoforms containing heparan sulfate chains rich in N-unsubstituted glucosamines. The latter were converted to high-charged species upon treatment of cells with 1 mM L-ascorbate, which releases NO from nitrosothiols, resulting in deaminative cleavage of heparan sulfate at the N-unsubstituted glucosamines. S-nitrosylation and subsequent deaminative cleavage were abrogated by inhibition of a Cu 2+ /Cu + -redox cycle. Under cell-free conditions, purified, S-nitrosylated glypican-1 was able to autocleave its heparan sulfate chains when NO-release was triggered by L-ascorbate. The heparan sulfate fragments generated in cells during this auto-catalytic process contained terminal anhydromannose residues. We conclude that the core protein of glypican-1 can slowly accumulate NO as nitrosothiols while Cu 2+ is reduced to Cu +. Subsequent release of NO results in efficient deaminative cleavage of the heparan sulfate chains attached to the same core protein while Cu + is oxidized to Cu 2+.}},
  author       = {{Ding, Kan and Mani, Katrin and Cheng, Fang and Belting, Mattias and Fransson, Lars-Åke}},
  issn         = {{1083-351X}},
  language     = {{eng}},
  number       = {{36}},
  pages        = {{33353--33360}},
  publisher    = {{American Society for Biochemistry and Molecular Biology}},
  series       = {{Journal of Biological Chemistry}},
  title        = {{Copper-dependent autocleavage of glypican-1heparan sulfate by nitric oxide derived fromintrinsic nitrosothiols.}},
  url          = {{http://dx.doi.org/10.1074/jbc.M203383200}},
  doi          = {{10.1074/jbc.M203383200}},
  volume       = {{277}},
  year         = {{2002}},
}