Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Transport asymmetry in peritoneal dialysis: application of a serial heteroporous peritoneal membrane model

Venturoli, Daniele LU and Rippe, Bengt LU (2001) In American Journal of Physiology: Renal, Fluid and Electrolyte Physiology 280(4). p.599-606
Abstract
The transport of macromolecules during peritoneal dialysis is highly selective when they move from blood to dialysate but nearly completely unselective in the opposite direction. Aiming at describing this asymmetry, we modeled the peritoneal barrier as a series arrangement of two heteroporous membranes. First a three-pore membrane was considered, crossed by small [radius of the small pore (r(s)) approximately 45 A], large [radius of the large pore (r(L)) approximately 250 A], and transcellular pores accounting for 90, 8, and 2% to the hydraulic conductance, respectively, and with a corresponding pore area over diffusion distance (A(0)/Delta x) set to 50,000 cm. We calculated the second membrane parameters by fitting simultaneously the... (More)
The transport of macromolecules during peritoneal dialysis is highly selective when they move from blood to dialysate but nearly completely unselective in the opposite direction. Aiming at describing this asymmetry, we modeled the peritoneal barrier as a series arrangement of two heteroporous membranes. First a three-pore membrane was considered, crossed by small [radius of the small pore (r(s)) approximately 45 A], large [radius of the large pore (r(L)) approximately 250 A], and transcellular pores accounting for 90, 8, and 2% to the hydraulic conductance, respectively, and with a corresponding pore area over diffusion distance (A(0)/Delta x) set to 50,000 cm. We calculated the second membrane parameters by fitting simultaneously the bidirectional clearance of molecules ranging from sucrose [molecular weight = 360, permeating solute radius (a(e)) approximately 5 A] to alpha(2)-macroglobulin (molecular weight = 820,000, a(e) approximately 90 A). The results describe a second two-pore membrane with very large pores (r(L) approximately 2,300 A) accounting for 95% of the hydraulic conductance, minor populations of small (r(s) approximately 67 A) and transcellular pores (3 and 2%, respectively), and an A(0)/Delta x approximately 65,000 cm. The estimated peritoneal lymph flow is approximately 0.3 ml/min. The two membranes can be identified as the capillary endothelium and an extracellular interstitium lumped with the peritoneal mesothelium. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
American Journal of Physiology: Renal, Fluid and Electrolyte Physiology
volume
280
issue
4
pages
599 - 606
publisher
American Physiological Society
external identifiers
  • pmid:11249851
  • scopus:0035015923
ISSN
0363-6127
language
English
LU publication?
yes
id
f8c3a95e-4aff-4a67-9872-f51677ef58c9 (old id 1121323)
alternative location
http://ajprenal.physiology.org/cgi/content/full/280/4/F599
date added to LUP
2016-04-01 12:03:06
date last changed
2022-04-13 05:21:28
@article{f8c3a95e-4aff-4a67-9872-f51677ef58c9,
  abstract     = {{The transport of macromolecules during peritoneal dialysis is highly selective when they move from blood to dialysate but nearly completely unselective in the opposite direction. Aiming at describing this asymmetry, we modeled the peritoneal barrier as a series arrangement of two heteroporous membranes. First a three-pore membrane was considered, crossed by small [radius of the small pore (r(s)) approximately 45 A], large [radius of the large pore (r(L)) approximately 250 A], and transcellular pores accounting for 90, 8, and 2% to the hydraulic conductance, respectively, and with a corresponding pore area over diffusion distance (A(0)/Delta x) set to 50,000 cm. We calculated the second membrane parameters by fitting simultaneously the bidirectional clearance of molecules ranging from sucrose [molecular weight = 360, permeating solute radius (a(e)) approximately 5 A] to alpha(2)-macroglobulin (molecular weight = 820,000, a(e) approximately 90 A). The results describe a second two-pore membrane with very large pores (r(L) approximately 2,300 A) accounting for 95% of the hydraulic conductance, minor populations of small (r(s) approximately 67 A) and transcellular pores (3 and 2%, respectively), and an A(0)/Delta x approximately 65,000 cm. The estimated peritoneal lymph flow is approximately 0.3 ml/min. The two membranes can be identified as the capillary endothelium and an extracellular interstitium lumped with the peritoneal mesothelium.}},
  author       = {{Venturoli, Daniele and Rippe, Bengt}},
  issn         = {{0363-6127}},
  language     = {{eng}},
  number       = {{4}},
  pages        = {{599--606}},
  publisher    = {{American Physiological Society}},
  series       = {{American Journal of Physiology: Renal, Fluid and Electrolyte Physiology}},
  title        = {{Transport asymmetry in peritoneal dialysis: application of a serial heteroporous peritoneal membrane model}},
  url          = {{http://ajprenal.physiology.org/cgi/content/full/280/4/F599}},
  volume       = {{280}},
  year         = {{2001}},
}