Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Transient and Steady-State Shear Banding in a Lamellar Phase as Studied by Rheo-NMR

Medronho, Bruno ; Olsson, Ulf LU ; Schmidt, Claudia and Galvosas, Petrik (2012) In Zeitschrift für Physikalische Chemie 226(11-12). p.1293-1313
Abstract
Flow fields and shear-induced structures in the lamellar (L-alpha) phase of the system triethylene glycol mono n-decyl ether (C10E3)/water were investigated by NMR velocimetry, diffusometry, and H-2 NMR spectroscopy. The transformation from multilamellar vesicles (MLVs) to aligned planar lamellae is accompanied by a transient gradient shear banding. A high-shear-rate band of aligned lamellae forms next to the moving inner wall of the cylindrical Couette shear cell while a low-shear-rate band of the initial MLV structure remains close to the outer stationary wall. The band of layers grows at the expense of the band of MLVs until the transformation is completed. This process scales with the applied strain. Wall slip is a characteristic of... (More)
Flow fields and shear-induced structures in the lamellar (L-alpha) phase of the system triethylene glycol mono n-decyl ether (C10E3)/water were investigated by NMR velocimetry, diffusometry, and H-2 NMR spectroscopy. The transformation from multilamellar vesicles (MLVs) to aligned planar lamellae is accompanied by a transient gradient shear banding. A high-shear-rate band of aligned lamellae forms next to the moving inner wall of the cylindrical Couette shear cell while a low-shear-rate band of the initial MLV structure remains close to the outer stationary wall. The band of layers grows at the expense of the band of MLVs until the transformation is completed. This process scales with the applied strain. Wall slip is a characteristic of the MLV state, while aligned layers show no deviation from Newtonian flow. The homogeneous nature of the opposite transformation from well aligned layers to MLVs via an intermediate structure resembling undulated multilamellar cylinders is confirmed. The strain dependence of this transformation appears to be independent of temperature. The shear diagram, which represents the shear-induced structures as a function of temperature and shear rate, contains a transition region between stable layers and stable MLVs. The steady-state structures in the transition region show a continuous change from layer-like at high temperature to MLV-like at lower temperature. These structures are homogeneous on a length scale above a few micrometers. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Shear-Induced Structure, Lamellar Phase, NMR Velocimetry, NMR, Diffusometry, H-2 NMR Spectroscopy
in
Zeitschrift für Physikalische Chemie
volume
226
issue
11-12
pages
1293 - 1313
publisher
Oldenbourg Wissenschaftsverlag
external identifiers
  • wos:000313317200015
  • scopus:84871796351
ISSN
0942-9352
DOI
10.1524/zpch.2012.0313
language
English
LU publication?
yes
id
a46e9a3e-c96c-46eb-a96e-998203e8892b (old id 3504153)
date added to LUP
2016-04-01 14:18:05
date last changed
2022-02-19 18:17:43
@article{a46e9a3e-c96c-46eb-a96e-998203e8892b,
  abstract     = {{Flow fields and shear-induced structures in the lamellar (L-alpha) phase of the system triethylene glycol mono n-decyl ether (C10E3)/water were investigated by NMR velocimetry, diffusometry, and H-2 NMR spectroscopy. The transformation from multilamellar vesicles (MLVs) to aligned planar lamellae is accompanied by a transient gradient shear banding. A high-shear-rate band of aligned lamellae forms next to the moving inner wall of the cylindrical Couette shear cell while a low-shear-rate band of the initial MLV structure remains close to the outer stationary wall. The band of layers grows at the expense of the band of MLVs until the transformation is completed. This process scales with the applied strain. Wall slip is a characteristic of the MLV state, while aligned layers show no deviation from Newtonian flow. The homogeneous nature of the opposite transformation from well aligned layers to MLVs via an intermediate structure resembling undulated multilamellar cylinders is confirmed. The strain dependence of this transformation appears to be independent of temperature. The shear diagram, which represents the shear-induced structures as a function of temperature and shear rate, contains a transition region between stable layers and stable MLVs. The steady-state structures in the transition region show a continuous change from layer-like at high temperature to MLV-like at lower temperature. These structures are homogeneous on a length scale above a few micrometers.}},
  author       = {{Medronho, Bruno and Olsson, Ulf and Schmidt, Claudia and Galvosas, Petrik}},
  issn         = {{0942-9352}},
  keywords     = {{Shear-Induced Structure; Lamellar Phase; NMR Velocimetry; NMR; Diffusometry; H-2 NMR Spectroscopy}},
  language     = {{eng}},
  number       = {{11-12}},
  pages        = {{1293--1313}},
  publisher    = {{Oldenbourg Wissenschaftsverlag}},
  series       = {{Zeitschrift für Physikalische Chemie}},
  title        = {{Transient and Steady-State Shear Banding in a Lamellar Phase as Studied by Rheo-NMR}},
  url          = {{http://dx.doi.org/10.1524/zpch.2012.0313}},
  doi          = {{10.1524/zpch.2012.0313}},
  volume       = {{226}},
  year         = {{2012}},
}