Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Scattering of stationary waves from buried three-dimensional inhomogeneities

Kristensson, Gerhard LU (1979)
Abstract
The T-matrix method (also called the "extended boundary condition method" or "null field approach") is a formalism, which applies to scattering of linear classical waves (i.e. acoustic, electromagnetic and elastic waves). The object of this thesis is to extend the T-Matrix formalism to a geometry consisting of two
half-spaces, one of which contains a three-dimensional inhomogeneity. The two half-spaces, separated by an infinite Interface, are otherwise homogeneous, linear and isotropic. The source that excites the scatterer can be located in any of the half-spaces or inside the inhomogeneity, though explicit equations and numerical computations are presented only for sources outside the inhomogeneity (above or below the interface). The... (More)
The T-matrix method (also called the "extended boundary condition method" or "null field approach") is a formalism, which applies to scattering of linear classical waves (i.e. acoustic, electromagnetic and elastic waves). The object of this thesis is to extend the T-Matrix formalism to a geometry consisting of two
half-spaces, one of which contains a three-dimensional inhomogeneity. The two half-spaces, separated by an infinite Interface, are otherwise homogeneous, linear and isotropic. The source that excites the scatterer can be located in any of the half-spaces or inside the inhomogeneity, though explicit equations and numerical computations are presented only for sources outside the inhomogeneity (above or below the interface). The assumptions on the sources are fairly weak, and in the numerical computations we consider a monopole or dipole source or an incoming Rayleigh surface wave. Furthermore the formalism applies to a large class of inhomogeneities, and we illustrate some: a sphere, a spheroid (both oblate and prolate) and two spheres. The orientation of the obstacle is arbitrary both with respect to the surface and the source. The scattered field in the general formalism is in a natural way separated in two terms, one of which is the directly scattered field as if no buried inhomogeneity were present. The other term reflects the presence of the inhomogeneity and that is the one which has been the quantity of primary interest in the numerical computations. (Less)
Please use this url to cite or link to this publication:
author
publishing date
type
Thesis
publication status
published
subject
pages
230 pages
language
English
LU publication?
no
id
73c652ec-4e2b-4005-97ff-7129978a5ea6
date added to LUP
2020-05-06 13:31:15
date last changed
2020-05-07 15:02:49
@phdthesis{73c652ec-4e2b-4005-97ff-7129978a5ea6,
  abstract     = {{The T-matrix method (also called the "extended boundary condition method" or "null field approach") is a formalism, which applies to scattering of linear classical waves (i.e. acoustic, electromagnetic and elastic waves). The object of this thesis is to extend the T-Matrix formalism to a geometry consisting of two<br/>half-spaces, one of which contains a three-dimensional inhomogeneity. The two half-spaces, separated by an infinite Interface, are otherwise homogeneous, linear and isotropic. The source that excites the scatterer can be located in any of the half-spaces or inside the inhomogeneity, though explicit equations and numerical computations are presented only for sources outside the inhomogeneity (above or below the interface). The assumptions on the sources are fairly weak, and in the numerical computations we consider a monopole or dipole source or an incoming Rayleigh surface wave. Furthermore the formalism applies to a large class of inhomogeneities, and we illustrate some: a sphere, a spheroid (both oblate and prolate) and two spheres. The orientation of the obstacle is arbitrary both with respect to the surface and the source. The scattered field in the general formalism is in a natural way separated in two terms, one of which is the directly scattered field as if no buried inhomogeneity were present. The other term reflects the presence of the inhomogeneity and that is the one which has been the quantity of primary interest in the numerical computations.}},
  author       = {{Kristensson, Gerhard}},
  language     = {{eng}},
  title        = {{Scattering of stationary waves from buried three-dimensional inhomogeneities}},
  url          = {{https://lup.lub.lu.se/search/files/79264919/PhD_Thesis.pdf}},
  year         = {{1979}},
}