Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Oxygen supply to immobilized cells : 5. Theoretical calculations and experimental data for the oxidation of glycerol by immobilized Gluconobacter oxydans cells with oxygen or p‐benzoquinone as electron acceptor

Adlercreutz, Patrick LU orcid (1986) In Biotechnology and Bioengineering 28(2). p.223-232
Abstract

Theoretical calculations of reaction kinetics were done for one‐step reactions catalyzed by cells immobilized in spherical beads. The reactions catalyzed by free cells were assumed to obey Michaelis–Menten kinetics for a one‐substrate reaction. Both external (outside the beads) and internal (inside the beads) mass transfer of the substrate were considered for the immobilized preparations. The theoretical calculations were compared with experimental data for the oxidation of glycerol to dihydroxyacetone by Gluconobacter oxydans cells immobilized in calcium alginate gel. Glycerol was present in excess so that the reaction rate was limited by oxygen. The correlation between experimental data and theoretical calculations was quite good. The... (More)

Theoretical calculations of reaction kinetics were done for one‐step reactions catalyzed by cells immobilized in spherical beads. The reactions catalyzed by free cells were assumed to obey Michaelis–Menten kinetics for a one‐substrate reaction. Both external (outside the beads) and internal (inside the beads) mass transfer of the substrate were considered for the immobilized preparations. The theoretical calculations were compared with experimental data for the oxidation of glycerol to dihydroxyacetone by Gluconobacter oxydans cells immobilized in calcium alginate gel. Glycerol was present in excess so that the reaction rate was limited by oxygen. The correlation between experimental data and theoretical calculations was quite good. The calculations showed how the overall effectiveness factor was influenced by, for example, the particle size and the cell density in the beads. In most cases the reaction rate was mainly limited by internal mass transfer of the substrate (oxygen). As shown previously, p‐benzoquinone can replace oxygen as the electron acceptor in this reaction. The same equations for reaction kinetics and mass transfer were used with p‐benzoquinone as the rate‐limiting substrate. Parameters such as diffusivity, maximal reaction rate, and K were, of course, different. In this case also, the correlation between the model and the experimental results was quite good. Much higher production rates were obtained with p‐benzoquinone as the electron acceptor compared to when oxygen was used. The reasons for this fact were that p‐benzoquinone gave a higher maximal reaction rate for free cells and the solubility of p‐benzoquinone was higher than for oxygen. Different methods of increasing the rate of microbial oxidation reactions are discussed.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Biotechnology and Bioengineering
volume
28
issue
2
pages
10 pages
publisher
John Wiley & Sons Inc.
external identifiers
  • scopus:0022661051
ISSN
0006-3592
DOI
10.1002/bit.260280212
language
English
LU publication?
yes
id
f0720c7e-0c12-4dbf-aa80-5c2763326b81
date added to LUP
2019-06-22 19:02:39
date last changed
2021-01-03 05:12:51
@article{f0720c7e-0c12-4dbf-aa80-5c2763326b81,
  abstract     = {{<p>Theoretical calculations of reaction kinetics were done for one‐step reactions catalyzed by cells immobilized in spherical beads. The reactions catalyzed by free cells were assumed to obey Michaelis–Menten kinetics for a one‐substrate reaction. Both external (outside the beads) and internal (inside the beads) mass transfer of the substrate were considered for the immobilized preparations. The theoretical calculations were compared with experimental data for the oxidation of glycerol to dihydroxyacetone by Gluconobacter oxydans cells immobilized in calcium alginate gel. Glycerol was present in excess so that the reaction rate was limited by oxygen. The correlation between experimental data and theoretical calculations was quite good. The calculations showed how the overall effectiveness factor was influenced by, for example, the particle size and the cell density in the beads. In most cases the reaction rate was mainly limited by internal mass transfer of the substrate (oxygen). As shown previously, p‐benzoquinone can replace oxygen as the electron acceptor in this reaction. The same equations for reaction kinetics and mass transfer were used with p‐benzoquinone as the rate‐limiting substrate. Parameters such as diffusivity, maximal reaction rate, and K were, of course, different. In this case also, the correlation between the model and the experimental results was quite good. Much higher production rates were obtained with p‐benzoquinone as the electron acceptor compared to when oxygen was used. The reasons for this fact were that p‐benzoquinone gave a higher maximal reaction rate for free cells and the solubility of p‐benzoquinone was higher than for oxygen. Different methods of increasing the rate of microbial oxidation reactions are discussed.</p>}},
  author       = {{Adlercreutz, Patrick}},
  issn         = {{0006-3592}},
  language     = {{eng}},
  month        = {{01}},
  number       = {{2}},
  pages        = {{223--232}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Biotechnology and Bioengineering}},
  title        = {{Oxygen supply to immobilized cells : 5. Theoretical calculations and experimental data for the oxidation of glycerol by immobilized Gluconobacter oxydans cells with oxygen or p‐benzoquinone as electron acceptor}},
  url          = {{http://dx.doi.org/10.1002/bit.260280212}},
  doi          = {{10.1002/bit.260280212}},
  volume       = {{28}},
  year         = {{1986}},
}