Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Stromal and tumor cell responses to hypoxia and treatment within the glioma microenvironment

Pantazopoulou, Vasiliki LU orcid (2021) In Lund University, Faculty of Medicine Doctoral Dissertation Series
Abstract
Glioblastoma is the most aggressive primary brain tumor in adults. Despite treatment, tumors invariably recur, and the recurring tumor is resistant to therapies. New approaches are needed for the successful treatment of glioblastoma patients.
Tumors are not simply a compilation of molecularly and phenotypically identical neoplastic cells. Instead, the tumor-associated stroma is instrumental in supporting tumor growth. Moreover, the cancer cells themselves are highly plastic, with some of the cells exhibiting stem-like phenotypes. Cancer stemness is linked to more aggressive disease, recurrence, and worse patient outcomes in several cancers. Hypoxic signaling, mediated by the HIF transcription factors, is a cornerstone in the... (More)
Glioblastoma is the most aggressive primary brain tumor in adults. Despite treatment, tumors invariably recur, and the recurring tumor is resistant to therapies. New approaches are needed for the successful treatment of glioblastoma patients.
Tumors are not simply a compilation of molecularly and phenotypically identical neoplastic cells. Instead, the tumor-associated stroma is instrumental in supporting tumor growth. Moreover, the cancer cells themselves are highly plastic, with some of the cells exhibiting stem-like phenotypes. Cancer stemness is linked to more aggressive disease, recurrence, and worse patient outcomes in several cancers. Hypoxic signaling, mediated by the HIF transcription factors, is a cornerstone in the maintenance of cancer stemness in glioblastoma and other cancers.
The aim of this thesis was to evaluate how microenvironmental cues affect the interactions between the tumor microenvironment and glioma stem-like cells in glioblastoma. We addressed how treatments and hypoxia affect tumor-associated astrocytes in ways that consequently alter glioma cell properties, and how hypoxia and pseudo-hypoxia are involved in stemness maintenance in glioblastoma. For this work, we used genetically engineered mouse models of glioma, primary stromal and glioma cell lines, classical glioblastoma cell lines, and organotypic slice cultures. We evaluated cell stemness by using multiple functional assays in combination with stem cell marker expression analysis. In papers I and II, we investigated the response of astrocytes to extrinsic factors of the microenvironment, namely radiation and temozolomide treatment, and to intrinsic factors of the microenvironment, namely intermediate and severe hypoxia. Astrocytes became reactive in response to these cues and produced extracellular matrix that altered glioma cell properties, including stemness. In papers III and IV, we investigated the role of hypoxia and pseudo-hypoxia in the maintenance of aggressive glioma phenotypes. We showed that the generation of the cleaved form of the cell surface glycoprotein CD44 leads to the stabilization of the HIFs in the perivascular and the perinecrotic glioma niche, leading to increased hypoxic signaling and glioma cell stemness. Moreover, we showed that p75NTR signaling is involved in the activation of the hypoxic signaling pathway and is also regulating glioma cell stemness and migration in hypoxia.
All in all, this thesis elucidated aspects of the glioblastoma microenvironment, namely irradiated and hypoxic astrocytes, and the CD44 and p75NTR signaling, that can lead to the development of new targeted therapeutic strategies.
(Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • docent Wilhelm, Margareta, Karolinska Institutet, Stockholm
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Cancer, glioblastoma, tumor microenvironment, reactive astrocytes, hypoxia, CD44, p75NTR
in
Lund University, Faculty of Medicine Doctoral Dissertation Series
issue
2021:108
pages
109 pages
publisher
Lund University, Faculty of Medicine
defense location
Stora Hörsalen, Medicon Village, Scheelevägen 2 i Lund
defense date
2021-10-29 09:00:00
ISSN
1652-8220
ISBN
978-91-8021-115-4
project
The role of FIH-1 in glioblastoma multiforme
language
English
LU publication?
yes
id
0b96f2be-9f3d-4a3b-862f-9015b215fa3a
date added to LUP
2021-10-05 21:23:56
date last changed
2021-10-08 02:19:27
@phdthesis{0b96f2be-9f3d-4a3b-862f-9015b215fa3a,
  abstract     = {{Glioblastoma is the most aggressive primary brain tumor in adults. Despite treatment, tumors invariably recur, and the recurring tumor is resistant to therapies. New approaches are needed for the successful treatment of glioblastoma patients.<br/>Tumors are not simply a compilation of molecularly and phenotypically identical neoplastic cells. Instead, the tumor-associated stroma is instrumental in supporting tumor growth. Moreover, the cancer cells themselves are highly plastic, with some of the cells exhibiting stem-like phenotypes. Cancer stemness is linked to more aggressive disease, recurrence, and worse patient outcomes in several cancers. Hypoxic signaling, mediated by the HIF transcription factors, is a cornerstone in the maintenance of cancer stemness in glioblastoma and other cancers.<br/>The aim of this thesis was to evaluate how microenvironmental cues affect the interactions between the tumor microenvironment and glioma stem-like cells in glioblastoma. We addressed how treatments and hypoxia affect tumor-associated astrocytes in ways that consequently alter glioma cell properties, and how hypoxia and pseudo-hypoxia are involved in stemness maintenance in glioblastoma. For this work, we used genetically engineered mouse models of glioma, primary stromal and glioma cell lines, classical glioblastoma cell lines, and organotypic slice cultures. We evaluated cell stemness by using multiple functional assays in combination with stem cell marker expression analysis. In papers I and II, we investigated the response of astrocytes to extrinsic factors of the microenvironment, namely radiation and temozolomide treatment, and to intrinsic factors of the microenvironment, namely intermediate and severe hypoxia. Astrocytes became reactive in response to these cues and produced extracellular matrix that altered glioma cell properties, including stemness. In papers III and IV, we investigated the role of hypoxia and pseudo-hypoxia in the maintenance of aggressive glioma phenotypes. We showed that the generation of the cleaved form of the cell surface glycoprotein CD44 leads to the stabilization of the HIFs in the perivascular and the perinecrotic glioma niche, leading to increased hypoxic signaling and glioma cell stemness. Moreover, we showed that p75<sup>NTR</sup> signaling is involved in the activation of the hypoxic signaling pathway and is also regulating glioma cell stemness and migration in hypoxia.<br/>All in all, this thesis elucidated aspects of the glioblastoma microenvironment, namely irradiated and hypoxic astrocytes, and the CD44 and p75<sup>NTR</sup> signaling, that can lead to the development of new targeted therapeutic strategies.<br/>}},
  author       = {{Pantazopoulou, Vasiliki}},
  isbn         = {{978-91-8021-115-4}},
  issn         = {{1652-8220}},
  keywords     = {{Cancer; glioblastoma; tumor microenvironment; reactive astrocytes; hypoxia; CD44; p75NTR}},
  language     = {{eng}},
  number       = {{2021:108}},
  publisher    = {{Lund University, Faculty of Medicine}},
  school       = {{Lund University}},
  series       = {{Lund University, Faculty of Medicine Doctoral Dissertation Series}},
  title        = {{Stromal and tumor cell responses to hypoxia and treatment within the glioma microenvironment}},
  url          = {{https://lup.lub.lu.se/search/files/103356178/e_nailing_ex_vasiliki.pdf}},
  year         = {{2021}},
}