Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Critical appraisal of technologies to assess electrical activity during atrial fibrillation : a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology

De Groot, Natasja M.S. ; Shah, Dipen ; Boyle, Patrick M. ; Anter, Elad ; Clifford, Gari D. ; Deisenhofer, Isabel ; Deneke, Thomas ; Van Dessel, Pascal ; Doessel, Olaf and Dilaveris, Polychronis , et al. (2022) In Europace 24(2). p.313-330
Abstract

We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording... (More)

We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Atrial fibrillation, Cardiac implantable electronic devices, EHRA position paper, Machine learning, Mapping, Signal processing, Signal recording
in
Europace
volume
24
issue
2
pages
18 pages
publisher
Oxford University Press
external identifiers
  • pmid:34878119
  • scopus:85124437328
ISSN
1099-5129
DOI
10.1093/europace/euab254
language
English
LU publication?
yes
id
26dd74dc-5f99-4f72-a701-e381052eecb5
date added to LUP
2022-12-29 10:57:47
date last changed
2024-04-04 15:06:23
@article{26dd74dc-5f99-4f72-a701-e381052eecb5,
  abstract     = {{<p>We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.</p>}},
  author       = {{De Groot, Natasja M.S. and Shah, Dipen and Boyle, Patrick M. and Anter, Elad and Clifford, Gari D. and Deisenhofer, Isabel and Deneke, Thomas and Van Dessel, Pascal and Doessel, Olaf and Dilaveris, Polychronis and Heinzel, Frank R. and Kapa, Suraj and Lambiase, Pier D. and Lumens, Joost and Platonov, Pyotr G. and Ngarmukos, Tachapong and Martinez, Juan Pablo and Sanchez, Alejandro Olaya and Takahashi, Yoshihide and Valdigem, Bruno P. and Van Der Veen, Alle Jan and Vernooy, Kevin and Casado-Arroyo, Ruben and De Potter, Tom and Dinov, Borislav and Kosiuk, Jedrzej and Linz, Dominik and Neubeck, Lis and Svennberg, Emma and Kim, Young Hoon and Wan, Elaine and Lopez-Cabanillas, Nestor and Locati, Emanuela T. and Macfarlane, Peter}},
  issn         = {{1099-5129}},
  keywords     = {{Atrial fibrillation; Cardiac implantable electronic devices; EHRA position paper; Machine learning; Mapping; Signal processing; Signal recording}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{313--330}},
  publisher    = {{Oxford University Press}},
  series       = {{Europace}},
  title        = {{Critical appraisal of technologies to assess electrical activity during atrial fibrillation : a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology}},
  url          = {{http://dx.doi.org/10.1093/europace/euab254}},
  doi          = {{10.1093/europace/euab254}},
  volume       = {{24}},
  year         = {{2022}},
}