Advanced

Hydrogen analysis by p-p scattering in geological material

Wegdén, Marie LU ; Kristiansson, Per LU ; Pastuovic, Z; Skogby, H; Auzelyte, Vaida LU ; Elfman, Mikael LU ; Malmqvist, Klas LU ; Nilsson, Christer LU ; Pallon, Jan LU and Shariff, Asad LU (2004) In Nuclear Instruments & Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms 219-20. p.550-554
Abstract
It has been concluded by geologists that a significant amount of hydrogen is stored as point defects in nominally anhydrous minerals. Determination of the amount of hydrogen bound in these minerals is a step towards determining the total water content of the earth mantle as well as comprehending its internal water cycle. The possibility to measure hydrogen in thin geological samples by elastic p-p scattering has been investigated at the Lund Nuclear Microprobe. In this work the development of the experimental procedure and standardisation of data analysis is described. Special emphasis has been put into doing the data analysis as simple as possible and at the same time applicable to all sorts of thin samples, even those of unknown nature.... (More)
It has been concluded by geologists that a significant amount of hydrogen is stored as point defects in nominally anhydrous minerals. Determination of the amount of hydrogen bound in these minerals is a step towards determining the total water content of the earth mantle as well as comprehending its internal water cycle. The possibility to measure hydrogen in thin geological samples by elastic p-p scattering has been investigated at the Lund Nuclear Microprobe. In this work the development of the experimental procedure and standardisation of data analysis is described. Special emphasis has been put into doing the data analysis as simple as possible and at the same time applicable to all sorts of thin samples, even those of unknown nature. A special annular surface barrier detector composed of two insulated detector halves, which are read out simultaneously, is used to detect the recoiled proton and the scattered proton in coincidence. Conditions on the difference in time and energy of the detected particles, enables us to distinguish true hydrogen events from false or random ones. Homogeneous Mylar foils with known hydrogen content are used as reference material and enables determination of the total amount of hydrogen in the bulk of the geological samples as well as depth profiling, in order to separate contaminations in the surface front the bulk concentrations. The method has been tested with a 2.8 MeV proton beam on thin samples of both Muscovite, which is known to have a natural hydrogen concentration of about 0.5 wt%, and Pyroxene, which is a nominally anhydrous mineral. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
hydrogen, coincidence, p-p scattering, depth profiling, geology
in
Nuclear Instruments & Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms
volume
219-20
pages
550 - 554
publisher
Elsevier
external identifiers
  • wos:000221895800103
  • scopus:2342531038
ISSN
0168-583X
DOI
10.1016/j.nimb.2004.01.118
language
English
LU publication?
yes
id
6baee979-a1f8-4039-af2d-1f9b3350c306 (old id 275150)
date added to LUP
2007-10-26 09:38:50
date last changed
2017-01-01 06:58:13
@article{6baee979-a1f8-4039-af2d-1f9b3350c306,
  abstract     = {It has been concluded by geologists that a significant amount of hydrogen is stored as point defects in nominally anhydrous minerals. Determination of the amount of hydrogen bound in these minerals is a step towards determining the total water content of the earth mantle as well as comprehending its internal water cycle. The possibility to measure hydrogen in thin geological samples by elastic p-p scattering has been investigated at the Lund Nuclear Microprobe. In this work the development of the experimental procedure and standardisation of data analysis is described. Special emphasis has been put into doing the data analysis as simple as possible and at the same time applicable to all sorts of thin samples, even those of unknown nature. A special annular surface barrier detector composed of two insulated detector halves, which are read out simultaneously, is used to detect the recoiled proton and the scattered proton in coincidence. Conditions on the difference in time and energy of the detected particles, enables us to distinguish true hydrogen events from false or random ones. Homogeneous Mylar foils with known hydrogen content are used as reference material and enables determination of the total amount of hydrogen in the bulk of the geological samples as well as depth profiling, in order to separate contaminations in the surface front the bulk concentrations. The method has been tested with a 2.8 MeV proton beam on thin samples of both Muscovite, which is known to have a natural hydrogen concentration of about 0.5 wt%, and Pyroxene, which is a nominally anhydrous mineral.},
  author       = {Wegdén, Marie and Kristiansson, Per and Pastuovic, Z and Skogby, H and Auzelyte, Vaida and Elfman, Mikael and Malmqvist, Klas and Nilsson, Christer and Pallon, Jan and Shariff, Asad},
  issn         = {0168-583X},
  keyword      = {hydrogen,coincidence,p-p scattering,depth profiling,geology},
  language     = {eng},
  pages        = {550--554},
  publisher    = {Elsevier},
  series       = {Nuclear Instruments & Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms},
  title        = {Hydrogen analysis by p-p scattering in geological material},
  url          = {http://dx.doi.org/10.1016/j.nimb.2004.01.118},
  volume       = {219-20},
  year         = {2004},
}