Advanced

Associations of Circulating Protein Levels With Lipid Fractions in the General Population

Figarska, Sylwia M.; Gustafsson, Stefan LU ; Sundström, Johan; Ärnlöv, Johan; Mälarstig, Anders; Elmståhl, Sölve LU ; Fall, Tove LU ; Lind, Lars and Ingelsson, Erik (2018) In Arteriosclerosis, Thrombosis, and Vascular Biology 38(10). p.2505-2518
Abstract

Objective- Revealing patterns of associations between circulating protein and lipid levels could improve biological understanding of cardiovascular disease (CVD). In this study, we investigated the associations between proteins related to CVD and triglyceride (TG), total cholesterol, LDL (low-density lipoprotein), and HDL (high-density lipoprotein) cholesterol levels in individuals from the general population. Approach and Results- We measured plasma protein levels using the Olink ProSeek CVD I or II+III arrays and analyzed 57 proteins available in 3 population-based cohorts: EpiHealth (n=2029; 52% women; median age, 61 years), PIVUS (Prospective Study of the Vasculature in Uppsala Seniors; n=790; 51% women; all aged 70 years), and... (More)

Objective- Revealing patterns of associations between circulating protein and lipid levels could improve biological understanding of cardiovascular disease (CVD). In this study, we investigated the associations between proteins related to CVD and triglyceride (TG), total cholesterol, LDL (low-density lipoprotein), and HDL (high-density lipoprotein) cholesterol levels in individuals from the general population. Approach and Results- We measured plasma protein levels using the Olink ProSeek CVD I or II+III arrays and analyzed 57 proteins available in 3 population-based cohorts: EpiHealth (n=2029; 52% women; median age, 61 years), PIVUS (Prospective Study of the Vasculature in Uppsala Seniors; n=790; 51% women; all aged 70 years), and ULSAM (Uppsala Longitudinal Study of Adult Men; n=551; all men aged 77 years). A discovery analysis was performed in EpiHealth in a regression framework (adjusted for sex, age, body mass index, smoking, glucose levels, systolic blood pressure, blood pressure medication, diabetes mellitus medication, and CVD history), and associations with false discovery rate <0.05 were further tested in PIVUS and ULSAM, where a P value of 0.05 was considered a successful replication (validation false discovery rate of 0.1%). We used summary statistics from a genome-wide association study on each protein biomarker (meta-analysis of EpiHealth, PIVUS, ULSAM, and IMPROVE [Carotid Intima-Media Thickness and IMT-Progression as Predictors of Vascular Events in a High-Risk European Population]) and publicly available data from Global Lipids Genetics Consortium to perform Mendelian randomization analyses to address possible causality of protein levels. Of 57 tested proteins, 42 demonstrated an association with at least 1 lipid fraction; 35 were associated with TG, 15 with total cholesterol, 9 with LDL cholesterol, and 24 with HDL cholesterol. Among these associations, we found KIM-1 (kidney injury molecule-1), TNFR (TNF [tumor necrosis factor] receptor) 1 and 2, TRAIL-R2 (TRAIL [TNF-related apoptosis-inducing ligand] receptor 2), and RETN (resistin) to be associated with all 4 lipid fractions. Further, 15 proteins were related to both TG and HDL cholesterol in a consistent and biologically expected manner, that is, higher TG and lower HDL cholesterol or vice versa. Another common pattern of associations was concomitantly higher TG, total cholesterol, and LDL cholesterol, which is associated with higher CVD risk. We did not find evidence of causal links for protein levels. Conclusions- Our comprehensive analysis of plasma proteins and lipid fractions of 3370 individuals from the general population provides new information about lipid metabolism.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
cholesterol, humans, proteomics, triglycerides
in
Arteriosclerosis, Thrombosis, and Vascular Biology
volume
38
issue
10
pages
14 pages
publisher
American Heart Association
external identifiers
  • scopus:85055611942
ISSN
1524-4636
DOI
10.1161/ATVBAHA.118.311440
language
English
LU publication?
yes
id
3acd4c0b-326a-4407-a92e-ac9af08ea400
date added to LUP
2018-11-16 09:49:18
date last changed
2019-02-20 11:36:21
@article{3acd4c0b-326a-4407-a92e-ac9af08ea400,
  abstract     = {<p>Objective- Revealing patterns of associations between circulating protein and lipid levels could improve biological understanding of cardiovascular disease (CVD). In this study, we investigated the associations between proteins related to CVD and triglyceride (TG), total cholesterol, LDL (low-density lipoprotein), and HDL (high-density lipoprotein) cholesterol levels in individuals from the general population. Approach and Results- We measured plasma protein levels using the Olink ProSeek CVD I or II+III arrays and analyzed 57 proteins available in 3 population-based cohorts: EpiHealth (n=2029; 52% women; median age, 61 years), PIVUS (Prospective Study of the Vasculature in Uppsala Seniors; n=790; 51% women; all aged 70 years), and ULSAM (Uppsala Longitudinal Study of Adult Men; n=551; all men aged 77 years). A discovery analysis was performed in EpiHealth in a regression framework (adjusted for sex, age, body mass index, smoking, glucose levels, systolic blood pressure, blood pressure medication, diabetes mellitus medication, and CVD history), and associations with false discovery rate &lt;0.05 were further tested in PIVUS and ULSAM, where a P value of 0.05 was considered a successful replication (validation false discovery rate of 0.1%). We used summary statistics from a genome-wide association study on each protein biomarker (meta-analysis of EpiHealth, PIVUS, ULSAM, and IMPROVE [Carotid Intima-Media Thickness and IMT-Progression as Predictors of Vascular Events in a High-Risk European Population]) and publicly available data from Global Lipids Genetics Consortium to perform Mendelian randomization analyses to address possible causality of protein levels. Of 57 tested proteins, 42 demonstrated an association with at least 1 lipid fraction; 35 were associated with TG, 15 with total cholesterol, 9 with LDL cholesterol, and 24 with HDL cholesterol. Among these associations, we found KIM-1 (kidney injury molecule-1), TNFR (TNF [tumor necrosis factor] receptor) 1 and 2, TRAIL-R2 (TRAIL [TNF-related apoptosis-inducing ligand] receptor 2), and RETN (resistin) to be associated with all 4 lipid fractions. Further, 15 proteins were related to both TG and HDL cholesterol in a consistent and biologically expected manner, that is, higher TG and lower HDL cholesterol or vice versa. Another common pattern of associations was concomitantly higher TG, total cholesterol, and LDL cholesterol, which is associated with higher CVD risk. We did not find evidence of causal links for protein levels. Conclusions- Our comprehensive analysis of plasma proteins and lipid fractions of 3370 individuals from the general population provides new information about lipid metabolism.</p>},
  author       = {Figarska, Sylwia M. and Gustafsson, Stefan and Sundström, Johan and Ärnlöv, Johan and Mälarstig, Anders and Elmståhl, Sölve and Fall, Tove and Lind, Lars and Ingelsson, Erik},
  issn         = {1524-4636},
  keyword      = {cholesterol,humans,proteomics,triglycerides},
  language     = {eng},
  number       = {10},
  pages        = {2505--2518},
  publisher    = {American Heart Association},
  series       = {Arteriosclerosis, Thrombosis, and Vascular Biology},
  title        = {Associations of Circulating Protein Levels With Lipid Fractions in the General Population},
  url          = {http://dx.doi.org/10.1161/ATVBAHA.118.311440},
  volume       = {38},
  year         = {2018},
}