Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A Fast Physical NOx Model Implemented on an Embedded System

Wilhelmsson, Carl LU ; Tunestål, Per LU ; Widd, Anders LU and Johansson, Rolf LU orcid (2009) 2009 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling In IFAC Proceedings Volumes 42(26). p.207-215
Abstract
This paper offers a two-zone, physical, NOx model with low computational cost, implemented in C on an embedded system. The model is able to compute NOx-emission formation with high time resolution during an engine cycle. To do this the model takes cylinder pressure and injected fuel amount as inputs and produces NO concentration as output. The model as such is not new, nevertheless the physical background of the model as well as the equations upon which the model is based had to be briefly described to facilitate the understanding of the subsequent work. The main part of the paper is devoted to the process of developing an algorithm implementing the described model, techniques used and issues encountered are described. The resulting... (More)
This paper offers a two-zone, physical, NOx model with low computational cost, implemented in C on an embedded system. The model is able to compute NOx-emission formation with high time resolution during an engine cycle. To do this the model takes cylinder pressure and injected fuel amount as inputs and produces NO concentration as output. The model as such is not new, nevertheless the physical background of the model as well as the equations upon which the model is based had to be briefly described to facilitate the understanding of the subsequent work. The main part of the paper is devoted to the process of developing an algorithm implementing the described model, techniques used and issues encountered are described. The resulting algorithm was implemented in C and tested on an embedded ARM processor. For the sake of implementation, parts of the algorithm had to be pre-computed and stored in tables, allowing significant acceleration of the computations. Since the model is non-linear, exponentially spaced tables had to be developed in order to successfully tabulate the parts needed without consuming too much memory. Much of the methods presented are also applicable in a variety other applications when it is desirable to implement fast versions of complex algorithms and models. The outcome regarding computation speed and memory needed is discussed. The final result is a low-cost NOx model, which is able to compute several orders of magnitude faster than NOx models known so far, implemented in C on an embedded system. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Embedded Systems, Micro-controllers, Field Programmable Gate Arrays, FPGA, Mathematical model, Physical model, Air pollution, Emissions, Internal Combustion Engine, NO, NOx, Diesel Engine, Engine, Algorithms, Nitrogen Oxides
in
IFAC Proceedings Volumes
volume
42
issue
26
pages
9 pages
publisher
Elsevier
conference name
2009 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
conference location
Rueil-Malmaison, France
conference dates
2009-11-30
external identifiers
  • scopus:80051541639
DOI
10.3182/20091130-3-FR-4008.00028
project
Competence Centre for Combustion Processes
language
English
LU publication?
yes
id
3ccee134-a6d6-4f07-881e-12e2f56383f5
date added to LUP
2022-06-21 11:49:06
date last changed
2022-09-05 13:42:05
@article{3ccee134-a6d6-4f07-881e-12e2f56383f5,
  abstract     = {{This paper offers a two-zone, physical, NOx model with low computational cost, implemented in C on an embedded system. The model is able to compute NOx-emission formation with high time resolution during an engine cycle. To do this the model takes cylinder pressure and injected fuel amount as inputs and produces NO concentration as output. The model as such is not new, nevertheless the physical background of the model as well as the equations upon which the model is based had to be briefly described to facilitate the understanding of the subsequent work. The main part of the paper is devoted to the process of developing an algorithm implementing the described model, techniques used and issues encountered are described. The resulting algorithm was implemented in C and tested on an embedded ARM processor. For the sake of implementation, parts of the algorithm had to be pre-computed and stored in tables, allowing significant acceleration of the computations. Since the model is non-linear, exponentially spaced tables had to be developed in order to successfully tabulate the parts needed without consuming too much memory. Much of the methods presented are also applicable in a variety other applications when it is desirable to implement fast versions of complex algorithms and models. The outcome regarding computation speed and memory needed is discussed. The final result is a low-cost NOx model, which is able to compute several orders of magnitude faster than NOx models known so far, implemented in C on an embedded system.}},
  author       = {{Wilhelmsson, Carl and Tunestål, Per and Widd, Anders and Johansson, Rolf}},
  keywords     = {{Embedded Systems; Micro-controllers; Field Programmable Gate Arrays; FPGA; Mathematical model; Physical model; Air pollution; Emissions; Internal Combustion Engine; NO; NOx; Diesel Engine; Engine; Algorithms; Nitrogen Oxides}},
  language     = {{eng}},
  number       = {{26}},
  pages        = {{207--215}},
  publisher    = {{Elsevier}},
  series       = {{IFAC Proceedings Volumes}},
  title        = {{A Fast Physical NOx Model Implemented on an Embedded System}},
  url          = {{http://dx.doi.org/10.3182/20091130-3-FR-4008.00028}},
  doi          = {{10.3182/20091130-3-FR-4008.00028}},
  volume       = {{42}},
  year         = {{2009}},
}