Intraduodenal infusion of alpha-ketoglutarate decreases whole body energy expenditure in growing pigs
(2006) In Clinical Nutrition 25(3). p.489-496- Abstract
- Background & aims: alpha-Ketoglutarate (AKG) has been suggested to play a particular role as an oxidative fuel for the gut, and thus may have a sparing function for fuels such as glutamate and aspartate. Using the pig model we aimed to quantify how the route of administration (intravenous, i.v.; intragastric, i.g.; intraduodenal, i.d.) affects AKG utilization, whole body energy expenditure (EE) and nutrient oxidation. Methods: Pigs (15 kg) were supplied with a complete nutrient solution (NS) via catheters. To explore the metabolic effects of AKG, 1.0 g AKG kgBW(-1) d(-1) was infused simultaneously with the NS using either the i.d., i.v. or i.g. route. [1-C-13]AKG (15 mg kgBW(-1)) was infused i.d., i.v. or i.g., respectively, for 3 h.... (More)
- Background & aims: alpha-Ketoglutarate (AKG) has been suggested to play a particular role as an oxidative fuel for the gut, and thus may have a sparing function for fuels such as glutamate and aspartate. Using the pig model we aimed to quantify how the route of administration (intravenous, i.v.; intragastric, i.g.; intraduodenal, i.d.) affects AKG utilization, whole body energy expenditure (EE) and nutrient oxidation. Methods: Pigs (15 kg) were supplied with a complete nutrient solution (NS) via catheters. To explore the metabolic effects of AKG, 1.0 g AKG kgBW(-1) d(-1) was infused simultaneously with the NS using either the i.d., i.v. or i.g. route. [1-C-13]AKG (15 mg kgBW(-1)) was infused i.d., i.v. or i.g., respectively, for 3 h. AKG utilization (AKG UTIL) was estimated as AKG UTIL = 100-C-13 recovery (% of C-13 dose). C-13 recovery was calculated from the C-13 enrichment in breath CO2 and the whole-body CO2 production. Results: AKG infusion and NS via the i.d. route resulted in a reduced AKG UTIL (40.1 +/- 6.7) as compared to the i.v. route (62.9 +/- 2.4, P < 0.001) and i.g. route (62.3 +/- 1.6, P < 0.001). The total EE was lower with the i.d. route of AKG and NS (745 +/- 68 kJ kgBW(-0.62) d(-1)) as compared to the i.v. route (965 +/- 54 kJ kgBW(-0.62) d(-1), P < 0.005) and i.g. route (918 +/- 43 kJ kgBW(-0.62) d(-1), P < 0.005). Carbohydrate oxidation was increased with the i.d. route (38.2g +/- 3.4 kg BW-0.62 d(-1)) as compared to the i.v. route (27.8 +/- 2.9g kg BW-0.62 d(-1), P < 0.08) and i.g. route (23.9 +/- 8.5g kg BW-0.62 d(-1), P < 0.05). Fat oxidation was decreased (2.1 +/- 1.9 g kgBW(-0.62) d(-1); P < 0.001) with the i.d. route as compared to the i.v. route (11.5 coproduct 1.4g kgBW(-0.62) d(-1), P < 0.001) and i.g. route (11.9 +/- 3.1 g kgBW(-0.62) d(-1), P < 0.001). Conclusions: The i.d. infusion of AKG in combination with the NS affected the whole body EE and nutrient oxidation, in comparison to that obtained with the i.v. and i.g. routes. It was concluded that the i.d. administration of AKG markedly controlled the nutrient partitioning in the oxidation processes. Finally, in contrary to the observations with glutamine or glutamate, a considerable percentage of the AKG infusion was retained in the body irrespective of the route of administration. (C) 2005 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/402275
- author
- Junghans, Peter ; Derno, Michael ; Pierzynowski, Stefan LU ; Hennig, Ulf ; Rudolph, Paul Eberhard and Souffrant, Wolfgang B.
- organization
- publishing date
- 2006
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- energy expenditure, alpha-ketoglutarate, administration route, pig model
- in
- Clinical Nutrition
- volume
- 25
- issue
- 3
- pages
- 489 - 496
- publisher
- Elsevier
- external identifiers
-
- wos:000239127000015
- scopus:33744935791
- ISSN
- 1532-1983
- DOI
- 10.1016/j.clnu.2005.11.003
- language
- English
- LU publication?
- yes
- id
- d81bdb1a-c71d-4345-a503-7f18558bc733 (old id 402275)
- date added to LUP
- 2016-04-01 16:08:34
- date last changed
- 2022-03-14 22:25:16
@article{d81bdb1a-c71d-4345-a503-7f18558bc733, abstract = {{Background & aims: alpha-Ketoglutarate (AKG) has been suggested to play a particular role as an oxidative fuel for the gut, and thus may have a sparing function for fuels such as glutamate and aspartate. Using the pig model we aimed to quantify how the route of administration (intravenous, i.v.; intragastric, i.g.; intraduodenal, i.d.) affects AKG utilization, whole body energy expenditure (EE) and nutrient oxidation. Methods: Pigs (15 kg) were supplied with a complete nutrient solution (NS) via catheters. To explore the metabolic effects of AKG, 1.0 g AKG kgBW(-1) d(-1) was infused simultaneously with the NS using either the i.d., i.v. or i.g. route. [1-C-13]AKG (15 mg kgBW(-1)) was infused i.d., i.v. or i.g., respectively, for 3 h. AKG utilization (AKG UTIL) was estimated as AKG UTIL = 100-C-13 recovery (% of C-13 dose). C-13 recovery was calculated from the C-13 enrichment in breath CO2 and the whole-body CO2 production. Results: AKG infusion and NS via the i.d. route resulted in a reduced AKG UTIL (40.1 +/- 6.7) as compared to the i.v. route (62.9 +/- 2.4, P < 0.001) and i.g. route (62.3 +/- 1.6, P < 0.001). The total EE was lower with the i.d. route of AKG and NS (745 +/- 68 kJ kgBW(-0.62) d(-1)) as compared to the i.v. route (965 +/- 54 kJ kgBW(-0.62) d(-1), P < 0.005) and i.g. route (918 +/- 43 kJ kgBW(-0.62) d(-1), P < 0.005). Carbohydrate oxidation was increased with the i.d. route (38.2g +/- 3.4 kg BW-0.62 d(-1)) as compared to the i.v. route (27.8 +/- 2.9g kg BW-0.62 d(-1), P < 0.08) and i.g. route (23.9 +/- 8.5g kg BW-0.62 d(-1), P < 0.05). Fat oxidation was decreased (2.1 +/- 1.9 g kgBW(-0.62) d(-1); P < 0.001) with the i.d. route as compared to the i.v. route (11.5 coproduct 1.4g kgBW(-0.62) d(-1), P < 0.001) and i.g. route (11.9 +/- 3.1 g kgBW(-0.62) d(-1), P < 0.001). Conclusions: The i.d. infusion of AKG in combination with the NS affected the whole body EE and nutrient oxidation, in comparison to that obtained with the i.v. and i.g. routes. It was concluded that the i.d. administration of AKG markedly controlled the nutrient partitioning in the oxidation processes. Finally, in contrary to the observations with glutamine or glutamate, a considerable percentage of the AKG infusion was retained in the body irrespective of the route of administration. (C) 2005 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.}}, author = {{Junghans, Peter and Derno, Michael and Pierzynowski, Stefan and Hennig, Ulf and Rudolph, Paul Eberhard and Souffrant, Wolfgang B.}}, issn = {{1532-1983}}, keywords = {{energy expenditure; alpha-ketoglutarate; administration route; pig model}}, language = {{eng}}, number = {{3}}, pages = {{489--496}}, publisher = {{Elsevier}}, series = {{Clinical Nutrition}}, title = {{Intraduodenal infusion of alpha-ketoglutarate decreases whole body energy expenditure in growing pigs}}, url = {{http://dx.doi.org/10.1016/j.clnu.2005.11.003}}, doi = {{10.1016/j.clnu.2005.11.003}}, volume = {{25}}, year = {{2006}}, }