Advanced

Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.

Wallström, Sabá LU ; Florez-Sarasa, Igor; Araújo, Wagner L; Escobar, Matthew A; Geisler, Daniela A; Aidemark, Mari LU ; Lager, Ida LU ; Fernie, Alisdair R; Ribas-Carbó, Miquel and Rasmusson, Allan LU (2014) In Plant and Cell Physiology 55(5). p.881-896
Abstract
The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III, and IV. These energy-bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox-stabilisation and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in... (More)
The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III, and IV. These energy-bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox-stabilisation and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)(+)-ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA-suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Plant and Cell Physiology
volume
55
issue
5
pages
881 - 896
publisher
Oxford University Press
external identifiers
  • pmid:24486764
  • wos:000336491400003
  • scopus:84900865385
ISSN
1471-9053
DOI
10.1093/pcp/pcu021
language
English
LU publication?
yes
id
65e88ec7-3d89-48d0-b219-a84e9f2bf477 (old id 4335913)
date added to LUP
2014-03-26 13:50:53
date last changed
2017-09-03 03:10:13
@article{65e88ec7-3d89-48d0-b219-a84e9f2bf477,
  abstract     = {The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III, and IV. These energy-bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox-stabilisation and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)(+)-ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA-suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.},
  author       = {Wallström, Sabá and Florez-Sarasa, Igor and Araújo, Wagner L and Escobar, Matthew A and Geisler, Daniela A and Aidemark, Mari and Lager, Ida and Fernie, Alisdair R and Ribas-Carbó, Miquel and Rasmusson, Allan},
  issn         = {1471-9053},
  language     = {eng},
  number       = {5},
  pages        = {881--896},
  publisher    = {Oxford University Press},
  series       = {Plant and Cell Physiology},
  title        = {Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.},
  url          = {http://dx.doi.org/10.1093/pcp/pcu021},
  volume       = {55},
  year         = {2014},
}