Advanced

Scalable stability conditions for heterogeneous networks via integral quadratic constraints

Khong, Sei Zhen LU and Rantzer, Anders LU (2014) European Control Conference, 2014 In [Host publication title missing] p.2863-2867
Abstract
Decentralised and scalable conditions for robust stability of networks of heterogenous linear time-invariant (LTI) systems are derived based on integral quadratic constraints. These generalise previous works in the literature with an increased flexibility in the choice of multipliers employed. The results allow for arbitrary interconnection matrices and accommodate multi-input-multi-output systems. Similar conditions are also developed for nonlinear systems interconnected with LTI systems following a bipartite structure. In particular, the stability certificates only involve each individual LTI agent and its nearest nonlinear neighbours.
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
in
[Host publication title missing]
pages
2863 - 2867
publisher
IEEE--Institute of Electrical and Electronics Engineers Inc.
conference name
European Control Conference, 2014
external identifiers
  • wos:000349955703028
  • scopus:84911498636
language
English
LU publication?
yes
id
80e4467b-d849-4ec3-bc31-fcd152aebdf2 (old id 4739106)
date added to LUP
2014-11-09 18:03:49
date last changed
2017-01-01 08:08:26
@inproceedings{80e4467b-d849-4ec3-bc31-fcd152aebdf2,
  abstract     = {Decentralised and scalable conditions for robust stability of networks of heterogenous linear time-invariant (LTI) systems are derived based on integral quadratic constraints. These generalise previous works in the literature with an increased flexibility in the choice of multipliers employed. The results allow for arbitrary interconnection matrices and accommodate multi-input-multi-output systems. Similar conditions are also developed for nonlinear systems interconnected with LTI systems following a bipartite structure. In particular, the stability certificates only involve each individual LTI agent and its nearest nonlinear neighbours.},
  author       = {Khong, Sei Zhen and Rantzer, Anders},
  booktitle    = {[Host publication title missing]},
  language     = {eng},
  pages        = {2863--2867},
  publisher    = {IEEE--Institute of Electrical and Electronics Engineers Inc.},
  title        = {Scalable stability conditions for heterogeneous networks via integral quadratic constraints},
  year         = {2014},
}