Advanced

Dynamic Modelling and Simulation of Liquid Food Process Lines

Skoglund, Tomas LU (2007)
Abstract (Swedish)
Popular Abstract in Swedish

I följande arbete har ett dynamiskt modellbibliotek av komponenter utvecklats för processlinjer. Analysen inriktades mot karakteristiska aspekter för processlinjer för flytande livsmedel, och nya modeller utvecklades för byte av fluidum, dispersion, blandfaser och första ordningens kemiska reaktioner i rör och värmeväxlare. Modellernas beräkningseffektivitet och noggrannhet analyserades. Det visades att klassiska modeller av fluiders propagering i processlinjer kunde kombineras med moderna numeriska metoder för att uppnå beräkningseffektiva dynamiska modeller för simulering av dispergerat konvektivt flöde, med och utan kemiska reaktioner.



Speciellt demonstrerades att en... (More)
Popular Abstract in Swedish

I följande arbete har ett dynamiskt modellbibliotek av komponenter utvecklats för processlinjer. Analysen inriktades mot karakteristiska aspekter för processlinjer för flytande livsmedel, och nya modeller utvecklades för byte av fluidum, dispersion, blandfaser och första ordningens kemiska reaktioner i rör och värmeväxlare. Modellernas beräkningseffektivitet och noggrannhet analyserades. Det visades att klassiska modeller av fluiders propagering i processlinjer kunde kombineras med moderna numeriska metoder för att uppnå beräkningseffektiva dynamiska modeller för simulering av dispergerat konvektivt flöde, med och utan kemiska reaktioner.



Speciellt demonstrerades att en transportfördröjningsmodell väl lämpar sig för simulering av termiska transienter orsakad av byte av fluidum i värmeväxlare. Det visades att modellen kunde kompletteras med dispersion genom en metod som, trots klassisk metodik, möjliggör viss frihet i val av diskretisering beroende på behovet av noggrannhet visavi beräkningshastighet. Ytterligare komplettering av modellen med första ordningens kemiska reaktioner för simulering av mikrobiell deaktivering demonstrerades.



Dessutom demonstrerades användbarheten av modellen för dispergerat konvektivt flöde i syfte att prediktera storlek på blandfaser och mängd bortsorterad produkt vid kontinuerlig produktion. Relevansen med avseende på spårbarhet diskuteras och konceptet ?fuzzy spårbarhet? införs. (Less)
Abstract
In the present work a dynamic model library of components for process lines was developed. The analysis addressed characteristic aspects of liquid food process lines, and new models were developed for fluid transitions, dispersion, mixing zones and first-order chemical reactions in pipes and heat exchangers. The computational efficiency and accuracy of the models were analysed. It was demonstrated that classical models of fluid propagation in process lines could be combined with modern numerical methods to obtain computationally efficient dynamic models for the simulation of dispersed convective flow, with and without chemical reactions.



In particular it was demonstrated that a transport delay model was well suited for... (More)
In the present work a dynamic model library of components for process lines was developed. The analysis addressed characteristic aspects of liquid food process lines, and new models were developed for fluid transitions, dispersion, mixing zones and first-order chemical reactions in pipes and heat exchangers. The computational efficiency and accuracy of the models were analysed. It was demonstrated that classical models of fluid propagation in process lines could be combined with modern numerical methods to obtain computationally efficient dynamic models for the simulation of dispersed convective flow, with and without chemical reactions.



In particular it was demonstrated that a transport delay model was well suited for the simulation of thermal transients due to fluid transitions in heat exchangers. It was shown that the model could be extended to account for dispersion with a method that, although classical in approach, enables a certain freedom in the choice of degree of discretization depending on the demand for accuracy vs. computational speed. Further extension of the model with first-order chemical reactions to account for microbial deactivation was demonstrated.



The usefulness of the dispersed-convection model to predict the extent of mixing zones and the amount of product rejects in continuous processing was demonstrated. The relevance concerning product traceability is discussed and the concept ?fuzzy traceability? introduced. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor de Prada Moraga, César, Dpt. of Systems Engineering and Automatic Control, Universidad de Valladolid, c/ Real de Burgos s/n.
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Process lines, Dynamic model, Microbial deactivation, Data- och systemvetenskap, computer technology, Systems engineering, Fuzzy traceability, Traceability, Thermal engineering, termodynamik, Termisk teknik, applied thermodynamics, Chemical technology and engineering, Kemiteknik och kemisk teknologi, Food and drink technology, Heat exchanger, Dispersion, Fluid property transition, Liquid food, Dynamic simulation, Livsmedelsteknik
pages
124 pages
publisher
Department of Food Technology, Engineering and Nutrition, Lund University
defense location
Lecture Hall B, Center of Chemistry and Chemical Engineering, Getingevägen 60, Lund, Sweden
defense date
2007-06-12 13:00
ISBN
978-91-976695-1-1
language
English
LU publication?
yes
id
fd97c2cc-3560-499e-bde4-3da9f8fc2611 (old id 548692)
date added to LUP
2007-10-10 10:49:52
date last changed
2016-09-19 08:45:09
@phdthesis{fd97c2cc-3560-499e-bde4-3da9f8fc2611,
  abstract     = {In the present work a dynamic model library of components for process lines was developed. The analysis addressed characteristic aspects of liquid food process lines, and new models were developed for fluid transitions, dispersion, mixing zones and first-order chemical reactions in pipes and heat exchangers. The computational efficiency and accuracy of the models were analysed. It was demonstrated that classical models of fluid propagation in process lines could be combined with modern numerical methods to obtain computationally efficient dynamic models for the simulation of dispersed convective flow, with and without chemical reactions.<br/><br>
<br/><br>
In particular it was demonstrated that a transport delay model was well suited for the simulation of thermal transients due to fluid transitions in heat exchangers. It was shown that the model could be extended to account for dispersion with a method that, although classical in approach, enables a certain freedom in the choice of degree of discretization depending on the demand for accuracy vs. computational speed. Further extension of the model with first-order chemical reactions to account for microbial deactivation was demonstrated.<br/><br>
<br/><br>
The usefulness of the dispersed-convection model to predict the extent of mixing zones and the amount of product rejects in continuous processing was demonstrated. The relevance concerning product traceability is discussed and the concept ?fuzzy traceability? introduced.},
  author       = {Skoglund, Tomas},
  isbn         = {978-91-976695-1-1},
  keyword      = {Process lines,Dynamic model,Microbial deactivation,Data- och systemvetenskap,computer technology,Systems engineering,Fuzzy traceability,Traceability,Thermal engineering,termodynamik,Termisk teknik,applied thermodynamics,Chemical technology and engineering,Kemiteknik och kemisk teknologi,Food and drink technology,Heat exchanger,Dispersion,Fluid property transition,Liquid food,Dynamic simulation,Livsmedelsteknik},
  language     = {eng},
  pages        = {124},
  publisher    = {Department of Food Technology, Engineering and Nutrition, Lund University},
  school       = {Lund University},
  title        = {Dynamic Modelling and Simulation of Liquid Food Process Lines},
  year         = {2007},
}