Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations

Acharya, S. ; Adolfsson, J. LU ; Basu, S. LU orcid ; Christiansen, P. LU ; Matonoha, O. LU ; Nassirpour, A.F. LU orcid ; Ohlson, A. LU ; Oskarsson, A. LU ; Richert, T. LU and Rueda, O.V. LU , et al. (2022) In Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 834.
Abstract
Correlations between mean transverse momentum [pT] and anisotropic flow coefficients v2 or v3 are measured as a function of centrality in Pb–Pb and Xe–Xe collisions at sNN=5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [pT], v2, and v3 is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and TRENTo initial-state shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather... (More)
Correlations between mean transverse momentum [pT] and anisotropic flow coefficients v2 or v3 are measured as a function of centrality in Pb–Pb and Xe–Xe collisions at sNN=5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [pT], v2, and v3 is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and TRENTo initial-state shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather than the TRENTo based calculations. In particular, Trajectum and JETSCAPE predictions, both based on the TRENTo initial state model but with different parameter settings, fail to describe the measurements. As the correlations between [pT] and vn are mainly driven by the correlations of the size and the shape of the system in the initial state, these new studies pave a novel way to characterize the initial state and help pin down the uncertainty of the extracted properties of the quark–gluon plasma recreated in relativistic heavy-ion collisions. © 2022 The Author(s) (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
volume
834
article number
137393
publisher
Elsevier
external identifiers
  • scopus:85137295772
ISSN
0370-2693
DOI
10.1016/j.physletb.2022.137393
language
English
LU publication?
yes
id
6fda389e-2d1a-46a5-906e-b57c9c6fe4d8
date added to LUP
2022-12-19 10:49:42
date last changed
2023-05-11 09:21:27
@article{6fda389e-2d1a-46a5-906e-b57c9c6fe4d8,
  abstract     = {{Correlations between mean transverse momentum [pT] and anisotropic flow coefficients v2 or v3 are measured as a function of centrality in Pb–Pb and Xe–Xe collisions at sNN=5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [pT], v2, and v3 is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and TRENTo initial-state shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather than the TRENTo based calculations. In particular, Trajectum and JETSCAPE predictions, both based on the TRENTo initial state model but with different parameter settings, fail to describe the measurements. As the correlations between [pT] and vn are mainly driven by the correlations of the size and the shape of the system in the initial state, these new studies pave a novel way to characterize the initial state and help pin down the uncertainty of the extracted properties of the quark–gluon plasma recreated in relativistic heavy-ion collisions. © 2022 The Author(s)}},
  author       = {{Acharya, S. and Adolfsson, J. and Basu, S. and Christiansen, P. and Matonoha, O. and Nassirpour, A.F. and Ohlson, A. and Oskarsson, A. and Richert, T. and Rueda, O.V. and Silvermyr, D. and Zurlo, N.}},
  issn         = {{0370-2693}},
  language     = {{eng}},
  month        = {{11}},
  publisher    = {{Elsevier}},
  series       = {{Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics}},
  title        = {{Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations}},
  url          = {{http://dx.doi.org/10.1016/j.physletb.2022.137393}},
  doi          = {{10.1016/j.physletb.2022.137393}},
  volume       = {{834}},
  year         = {{2022}},
}