Lactobacillus plantarum strains for multifunctional oat-based foods
(2016) In LWT - Food Science and Technology 68. p.288-294- Abstract
Fermented oat-based foods offer attractive prospects within the market of non-dairy functional products, since they are suitable substrates for the delivery of probiotic microorganisms, and are significant sources of dietary fiber, both insoluble and soluble such as β-glucan, good quality fat and other phytochemicals important for human health.In the present work, whole oat flour was fermented with probiotic Lactobacillus plantarum strains to produce new functional foods with improved nutritional and technological features. Viability of the probiotic and the main technological, physico-chemical, nutritional and sensorial parameters were monitored at 7, 14 and 21 days of cold storage. The microbial survival was higher than... (More)
Fermented oat-based foods offer attractive prospects within the market of non-dairy functional products, since they are suitable substrates for the delivery of probiotic microorganisms, and are significant sources of dietary fiber, both insoluble and soluble such as β-glucan, good quality fat and other phytochemicals important for human health.In the present work, whole oat flour was fermented with probiotic Lactobacillus plantarum strains to produce new functional foods with improved nutritional and technological features. Viability of the probiotic and the main technological, physico-chemical, nutritional and sensorial parameters were monitored at 7, 14 and 21 days of cold storage. The microbial survival was higher than 5x108 cfu g-1 at the end of the shelf life. After the fermentation step, viscosity was higher in products inoculated with the exopolysaccharide-producing L. plantarum strain Lp90. However, a subsequent viscosity reduction was detected in all the samples throughout the storage period, consistent with the observed concentration decrease of the oat β-glucan. Vitamin B2 content was about two-fold higher in products fermented by the riboflavin-overproducing LpB2, and in these samples the riboflavin concentration further increased during cold storage.
(Less)
- author
- Russo, Pasquale ; de Chiara, Maria Lucia Valeria ; Capozzi, Vittorio ; Arena, Mattia Pia ; Amodio, Maria Luisa ; Rascón, Ana LU ; Dueñas, María Teresa ; López, Paloma and Spano, Giuseppe
- organization
- publishing date
- 2016-05-01
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Exopolysaccharides, Oat β-glucan, Oat-based foods, Probiotic, Riboflavin, Riboflavin (PubChem CID: 493570)
- in
- LWT - Food Science and Technology
- volume
- 68
- pages
- 7 pages
- publisher
- Elsevier
- external identifiers
-
- scopus:84962498549
- wos:000370769700038
- ISSN
- 0023-6438
- DOI
- 10.1016/j.lwt.2015.12.040
- language
- English
- LU publication?
- yes
- id
- 7666defd-3013-429f-b437-b6e4ec954fbc
- date added to LUP
- 2016-04-28 10:02:17
- date last changed
- 2024-10-04 15:10:39
@article{7666defd-3013-429f-b437-b6e4ec954fbc, abstract = {{<p>Fermented oat-based foods offer attractive prospects within the market of non-dairy functional products, since they are suitable substrates for the delivery of probiotic microorganisms, and are significant sources of dietary fiber, both insoluble and soluble such as β-glucan, good quality fat and other phytochemicals important for human health.In the present work, whole oat flour was fermented with probiotic Lactobacillus plantarum strains to produce new functional foods with improved nutritional and technological features. Viability of the probiotic and the main technological, physico-chemical, nutritional and sensorial parameters were monitored at 7, 14 and 21 days of cold storage. The microbial survival was higher than 5x10<sup>8</sup> cfu g<sup>-1</sup> at the end of the shelf life. After the fermentation step, viscosity was higher in products inoculated with the exopolysaccharide-producing L. plantarum strain Lp90. However, a subsequent viscosity reduction was detected in all the samples throughout the storage period, consistent with the observed concentration decrease of the oat β-glucan. Vitamin B2 content was about two-fold higher in products fermented by the riboflavin-overproducing LpB2, and in these samples the riboflavin concentration further increased during cold storage.</p>}}, author = {{Russo, Pasquale and de Chiara, Maria Lucia Valeria and Capozzi, Vittorio and Arena, Mattia Pia and Amodio, Maria Luisa and Rascón, Ana and Dueñas, María Teresa and López, Paloma and Spano, Giuseppe}}, issn = {{0023-6438}}, keywords = {{Exopolysaccharides; Oat β-glucan; Oat-based foods; Probiotic; Riboflavin; Riboflavin (PubChem CID: 493570)}}, language = {{eng}}, month = {{05}}, pages = {{288--294}}, publisher = {{Elsevier}}, series = {{LWT - Food Science and Technology}}, title = {{Lactobacillus plantarum strains for multifunctional oat-based foods}}, url = {{http://dx.doi.org/10.1016/j.lwt.2015.12.040}}, doi = {{10.1016/j.lwt.2015.12.040}}, volume = {{68}}, year = {{2016}}, }