Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The mean diffusion propagator model revealed cortical microstructural changes associated with both amyloid-β and tau pathology and astroglial activation

Spotorno, Nicola LU ; Strandberg, Olof LU ; Vis, Geraline LU ; Stomrud, Erik LU orcid ; Nilsson, Markus LU and Hansson, Oskar LU orcid (2022) In Alzheimer's and Dementia 18(S1).
Abstract

Background: Markers of downstream events are a key component of clinical trials of disease-modifying therapies for Alzheimer’s disease (AD). Morphometric metrics like cortical thickness are established measures of atrophy but are not sensitive enough to detect Aβ-related changes that occur before overt atrophy become visible. We aimed to investigate to what extent diffusion MRI can provide sensitive markers of cortical microstructural changes that could complement morphometric macrostructural measures. Method: We applied the mean apparent diffusion propagator model (MAP-MRI) to diffusion MRI data from 492 cognitively unimpaired elderly and patients with mild cognitive impairment from the Swedish BioFINDER-2 cohort. MAP-MRI extends... (More)

Background: Markers of downstream events are a key component of clinical trials of disease-modifying therapies for Alzheimer’s disease (AD). Morphometric metrics like cortical thickness are established measures of atrophy but are not sensitive enough to detect Aβ-related changes that occur before overt atrophy become visible. We aimed to investigate to what extent diffusion MRI can provide sensitive markers of cortical microstructural changes that could complement morphometric macrostructural measures. Method: We applied the mean apparent diffusion propagator model (MAP-MRI) to diffusion MRI data from 492 cognitively unimpaired elderly and patients with mild cognitive impairment from the Swedish BioFINDER-2 cohort. MAP-MRI extends diffusion tensor imaging and provides metrics sensitive to subtle changes in the cortex. Participants were stratified in Aβ-negative/tau-negative, Aβ-positive/tau-negative, and Aβ-positive/tau-positive based on Aβ- and tau-PET uptake. Cortical regional values of both MAP-MRI metrics and CT were compared across groups. Associations between regional values of MAP-MRI metrics and both Aβ- and tau-PET uptake were also investigated as well as the association between MAP-MRI metrics and plasma level of GFAP, a marker of astroglial activation (available in 292 participants). Result: Mean square displacement (MSD) from MAP-MRI revealed widespread microstructural differences already between Aβ-negative/tau-negative and Aβ-positive/tau-negative participants with a spatial distribution that closely resembled the pattern of Aβ accumulation. In contrast, differences in cortical thickness appeared to be more limited (figure 1). MSD was also highly correlated with both Aβ- and tau-PET uptake even independently from one another (figure 2). Regional MSD values were associated with GFAP with a pattern that resemble Aβ accumulation, and GFAP partially mediated the association between Aβ and MSD. A sensitivity analysis controlling for cortical thickness revealed that the associations between MSD and Aβ-PET, tau-PET and GFAP were largely independent from macrostructural changes (figures 2-3). Conclusion: Metrics of cortical microstructural alteration derived from MAP-MRI are highly sensitive to multiple aspects of the AD pathological cascade. Of particular interest is the link between MSD, Aβ-PET and GFAP which suggests MSD might reflects microstructural changes related to the astrocytic response to Aβ aggregation. Therefore, MSD could help monitoring the response to anti-Aβ treatments in clinical trials.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Alzheimer's and Dementia
volume
18
issue
S1
article number
e064928
publisher
Wiley
external identifiers
  • scopus:85144425473
ISSN
1552-5260
DOI
10.1002/alz.064928
language
English
LU publication?
yes
id
76f6bf6e-a7da-462e-b173-00d08e349431
date added to LUP
2023-01-12 16:14:28
date last changed
2023-12-06 00:43:43
@misc{76f6bf6e-a7da-462e-b173-00d08e349431,
  abstract     = {{<p>Background: Markers of downstream events are a key component of clinical trials of disease-modifying therapies for Alzheimer’s disease (AD). Morphometric metrics like cortical thickness are established measures of atrophy but are not sensitive enough to detect Aβ-related changes that occur before overt atrophy become visible. We aimed to investigate to what extent diffusion MRI can provide sensitive markers of cortical microstructural changes that could complement morphometric macrostructural measures. Method: We applied the mean apparent diffusion propagator model (MAP-MRI) to diffusion MRI data from 492 cognitively unimpaired elderly and patients with mild cognitive impairment from the Swedish BioFINDER-2 cohort. MAP-MRI extends diffusion tensor imaging and provides metrics sensitive to subtle changes in the cortex. Participants were stratified in Aβ-negative/tau-negative, Aβ-positive/tau-negative, and Aβ-positive/tau-positive based on Aβ- and tau-PET uptake. Cortical regional values of both MAP-MRI metrics and CT were compared across groups. Associations between regional values of MAP-MRI metrics and both Aβ- and tau-PET uptake were also investigated as well as the association between MAP-MRI metrics and plasma level of GFAP, a marker of astroglial activation (available in 292 participants). Result: Mean square displacement (MSD) from MAP-MRI revealed widespread microstructural differences already between Aβ-negative/tau-negative and Aβ-positive/tau-negative participants with a spatial distribution that closely resembled the pattern of Aβ accumulation. In contrast, differences in cortical thickness appeared to be more limited (figure 1). MSD was also highly correlated with both Aβ- and tau-PET uptake even independently from one another (figure 2). Regional MSD values were associated with GFAP with a pattern that resemble Aβ accumulation, and GFAP partially mediated the association between Aβ and MSD. A sensitivity analysis controlling for cortical thickness revealed that the associations between MSD and Aβ-PET, tau-PET and GFAP were largely independent from macrostructural changes (figures 2-3). Conclusion: Metrics of cortical microstructural alteration derived from MAP-MRI are highly sensitive to multiple aspects of the AD pathological cascade. Of particular interest is the link between MSD, Aβ-PET and GFAP which suggests MSD might reflects microstructural changes related to the astrocytic response to Aβ aggregation. Therefore, MSD could help monitoring the response to anti-Aβ treatments in clinical trials.</p>}},
  author       = {{Spotorno, Nicola and Strandberg, Olof and Vis, Geraline and Stomrud, Erik and Nilsson, Markus and Hansson, Oskar}},
  issn         = {{1552-5260}},
  language     = {{eng}},
  number       = {{S1}},
  publisher    = {{Wiley}},
  series       = {{Alzheimer's and Dementia}},
  title        = {{The mean diffusion propagator model revealed cortical microstructural changes associated with both amyloid-β and tau pathology and astroglial activation}},
  url          = {{http://dx.doi.org/10.1002/alz.064928}},
  doi          = {{10.1002/alz.064928}},
  volume       = {{18}},
  year         = {{2022}},
}