Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The Effect of Precipitation pH on Protein Recovery Yield and Emulsifying Properties in the Extraction of Protein from Cold-Pressed Rapeseed Press Cake

Ahlström, Cecilia LU ; Thuvander, Johan LU ; Rayner, Marilyn LU ; Matos, María ; Gutiérrez, Gemma and Östbring, Karolina LU (2022) In Molecules 27(9).
Abstract
Rapeseed is the second most cultivated oilseed after soybean and is mainly used to produce vegetable oil. The by-product rapeseed press cake is rich in high-quality proteins, thus having the possibility of becoming a new plant protein food source. This study aimed to investigate how the precipitation pH affects the protein yield, protein content, and emulsifying properties when industrially cold-pressed rapeseed press cake is used as the starting material. Proteins were extracted under alkaline conditions (pH 10.5) with an extraction coefficient of 52 ± 2% followed by precipitation at various pH (3.0-6.5). The most preferred condition in terms of process efficiency was pH 4.0, which is reflected in the zeta potential results, where the... (More)
Rapeseed is the second most cultivated oilseed after soybean and is mainly used to produce vegetable oil. The by-product rapeseed press cake is rich in high-quality proteins, thus having the possibility of becoming a new plant protein food source. This study aimed to investigate how the precipitation pH affects the protein yield, protein content, and emulsifying properties when industrially cold-pressed rapeseed press cake is used as the starting material. Proteins were extracted under alkaline conditions (pH 10.5) with an extraction coefficient of 52 ± 2% followed by precipitation at various pH (3.0-6.5). The most preferred condition in terms of process efficiency was pH 4.0, which is reflected in the zeta potential results, where the proteins' net charge was 0 at pH 4.2. pH 4.0 also exhibited the highest protein recovery yield (33 ± 0%) and the highest protein concentration (64 ± 1%, dry basis). Proteins precipitated at pH 6.0-6.5 stabilized emulsions with the smallest initial droplet size, although emulsions stabilized by rapeseed protein precipitated at pH 5.0-6.0 showed the highest emulsion stability at 37 °C for 21 days, with a limited layer of free oil. Overall, emulsion stabilized by protein precipitated at pH 5.0 was the most stable formulation, with no layer of free oil after 21 days of incubation. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Molecules
volume
27
issue
9
article number
2957
pages
19 pages
publisher
MDPI AG
external identifiers
  • pmid:35566309
  • scopus:85130043127
ISSN
1420-3049
DOI
10.3390/molecules27092957
project
Recovery and Utilization of Plant Protein from Agricultural By-Streams
language
English
LU publication?
yes
id
90de4a91-12f0-4129-8e84-a9f413ae5d1e
date added to LUP
2023-10-12 11:54:45
date last changed
2023-12-20 16:50:20
@article{90de4a91-12f0-4129-8e84-a9f413ae5d1e,
  abstract     = {{Rapeseed is the second most cultivated oilseed after soybean and is mainly used to produce vegetable oil. The by-product rapeseed press cake is rich in high-quality proteins, thus having the possibility of becoming a new plant protein food source. This study aimed to investigate how the precipitation pH affects the protein yield, protein content, and emulsifying properties when industrially cold-pressed rapeseed press cake is used as the starting material. Proteins were extracted under alkaline conditions (pH 10.5) with an extraction coefficient of 52 ± 2% followed by precipitation at various pH (3.0-6.5). The most preferred condition in terms of process efficiency was pH 4.0, which is reflected in the zeta potential results, where the proteins' net charge was 0 at pH 4.2. pH 4.0 also exhibited the highest protein recovery yield (33 ± 0%) and the highest protein concentration (64 ± 1%, dry basis). Proteins precipitated at pH 6.0-6.5 stabilized emulsions with the smallest initial droplet size, although emulsions stabilized by rapeseed protein precipitated at pH 5.0-6.0 showed the highest emulsion stability at 37 °C for 21 days, with a limited layer of free oil. Overall, emulsion stabilized by protein precipitated at pH 5.0 was the most stable formulation, with no layer of free oil after 21 days of incubation.}},
  author       = {{Ahlström, Cecilia and Thuvander, Johan and Rayner, Marilyn and Matos, María and Gutiérrez, Gemma and Östbring, Karolina}},
  issn         = {{1420-3049}},
  language     = {{eng}},
  month        = {{05}},
  number       = {{9}},
  publisher    = {{MDPI AG}},
  series       = {{Molecules}},
  title        = {{The Effect of Precipitation pH on Protein Recovery Yield and Emulsifying Properties in the Extraction of Protein from Cold-Pressed Rapeseed Press Cake}},
  url          = {{http://dx.doi.org/10.3390/molecules27092957}},
  doi          = {{10.3390/molecules27092957}},
  volume       = {{27}},
  year         = {{2022}},
}