Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Reduced Order Modeling and Substructuring : Applications in Nonlinear Structural Dynamics

Andersson, Linus LU (2024)
Abstract
A structural design process typically involves various load cases for which a sufficient load-bearing capacity must be demonstrated. In addition to static load cases, a verification of dynamic loads, such as blast and impact loading, may be required. To this end, the response can be estimated using computational models representing an idealized structure, often formulated using the finite element method. In contrast to static analyses, a dynamic response analysis generally requires some form of time (or frequency) discretization. Furthermore, to properly capture the structural behavior, it can be necessary to consider nonlinear effects, e.g., due to contact conditions, nonlinear material behaviors, or geometrically nonlinear effects. The... (More)
A structural design process typically involves various load cases for which a sufficient load-bearing capacity must be demonstrated. In addition to static load cases, a verification of dynamic loads, such as blast and impact loading, may be required. To this end, the response can be estimated using computational models representing an idealized structure, often formulated using the finite element method. In contrast to static analyses, a dynamic response analysis generally requires some form of time (or frequency) discretization. Furthermore, to properly capture the structural behavior, it can be necessary to consider nonlinear effects, e.g., due to contact conditions, nonlinear material behaviors, or geometrically nonlinear effects. The repeated solution in time of large nonlinear finite element models can be computationally expensive and time-consuming. Consequently, there is a need for computationally efficient modeling approaches, allowing for an interactive design process where alternative designs may be tested in a time-efficient manner.

By generating a reduced order model, the aim is to reduce the system size while maintaining sufficient accuracy of important output quantities. Hence, the computational cost can be reduced by analyzing a smaller, approximate system. For continuous structural dynamics problems discretized using the finite element method, reduced order models can be obtained by introducing a reduction basis. More specifically, the response is approximated using a set of time-independent displacement fields, referred to as mode shapes, which constitute the basis vectors of the modal basis. This approach is well-established and frequently used within linear structural dynamics. In the context of nonlinear structural dynamics, modal methods for reduced order modeling have gained more prominence during the last decades and is still an active area of research.

In the dissertation, strategies for nonlinear reduced order modeling are developed on the basis of structural engineering applications within two different areas; namely, concerning concrete structures subjected to blast loading and glass structures subjected to impact loading. Some of the challenges with regard to structural dynamics modeling are similar. In particular, brittle failure modes are often critical, why the response of higher order modes can be of particular importance. Moreover, an accurate representation of the structural behavior typically necessitates models considering nonlinear behaviors. More specifically, the dynamic problems involve localized nonlinearities in the form of contact conditions and joints, as well as geometric nonlinearity which, in contrast, is a distributed nonlinearity where degrees of freedoms throughout the structure are nonlinearly coupled.

Impact loading is a fundamental load case in design of glazed barriers, such as full-height facades and balustrades, which often governs the design. In this work, modeling strategies were developed for predicting the pre-failure elastic response of flat glass panels subjected to a standardized impactor, which represent a human body falling towards the glass panel. The response of glass panels, having a small thickness compared to the span width, are typically characterized by bending-stretching coupling effects. To consider these effects, which result in a geometrically nonlinear behavior, reduction bases were generated using bending modes and the associated static modal derivatives, corresponding to the second order terms in a Taylor’s expansion of the quasi-static displacement field. Moreover, approximate techniques for modeling contact were proposed, and a nonlinear viscous single-degree-of-freedom model was developed for reduced modeling of the impacting body. The response was evaluated based on experimental data and detailed finite element models. For the studied load cases, the proposed model was shown to predict important output quantities, such as the glass principal stresses, with high accuracy.

Furthermore, computationally efficient analysis techniques were developed for analysis of concrete structures subjected to blast loading. Specifically, reduced models including pre-defined plastic joints were developed by means of dynamic substructuring. A comparison to commonly used modeling strategies, which uses equivalent single-degree-of-freedom systems, suggests that the developed models provide a significantly improved accuracy of shear forces. This can be critical in a verification of brittle failure modes, such as diagonal and direct shear failure.

Finally, a review of various reduced order modeling techniques is presented which, in a broader perspective, provide a basis for developing reduced order models in various structural dynamics applications.
(Less)
Abstract (Swedish)
Vid utformning och dimensionering av såväl anläggningskonstruktioner som enskilda byggnadsdelar måste vanligtvis ett flertal olika belastningssituationer analyseras. Utöver statiska lastfall kan det vara nödvändigt att beakta dynamiska laster, såsom explosions- eller stötlast. För att påvisa tillräcklig bärförmåga används i allmänhet datorbaserade beräkningsmodeller, ofta framtagna med finita elementmetoden. Vid beräkning av dynamisk respons krävs då, till skillnad från statisk analys, en uppdelning av beräkningarna i antingen tids- eller frekvenssteg,
vilket medför upprepade beräkningar. Vidare kan det vara väsentligt att beakta olinjära effekter för att säkerställa en beräkningsmodell som representerar ett korrekt strukturbeteende... (More)
Vid utformning och dimensionering av såväl anläggningskonstruktioner som enskilda byggnadsdelar måste vanligtvis ett flertal olika belastningssituationer analyseras. Utöver statiska lastfall kan det vara nödvändigt att beakta dynamiska laster, såsom explosions- eller stötlast. För att påvisa tillräcklig bärförmåga används i allmänhet datorbaserade beräkningsmodeller, ofta framtagna med finita elementmetoden. Vid beräkning av dynamisk respons krävs då, till skillnad från statisk analys, en uppdelning av beräkningarna i antingen tids- eller frekvenssteg,
vilket medför upprepade beräkningar. Vidare kan det vara väsentligt att beakta olinjära effekter för att säkerställa en beräkningsmodell som representerar ett korrekt strukturbeteende och ger resultat med tillräcklig noggrannhet. Sådana effekter kan exempelvis uppstå till följd av interaktion mellan strukturdelar, olinjärt materialbeteende eller geometrisk olinjäritet. Sammantaget medför detta ofta beräkningsmässigt kostsamma och tidskrävande analyser. För att möjliggöra en tidseffektiv designprocess, där olika utformningsalternativ och dimensioner kan utvärderas, finns således behov av beräkningseffektiva modellerings- och analystekniker. I detta avseende utgör också balansen mellan prestanda och noggrannhet en central aspekt.

Genom att upprätta en reducerad beräkningsmodell är målet att minska antalet systemvariabler samtidigt som viktiga utdataparameterar kan predikteras med tillräcklig noggrannhet. Reducerade beräkningsmodeller kan exempelvis genereras utifrån finita elementmodeller. Mer specifikt kan responsen approximeras som en summa av ett antal tidsoberoende utböjningsformer, så kallade modformer. På detta sätt kan de fysiska frihetsgrader som vanligtvis används vid formulering av finita elementmodeller ersättas med ett reducerat antal generella frihetsgrader som representerar modala amplituder. Denna metodik används regelbundet och är väletablerad inom linjär strukturdynamik. Under de senaste decennierna har liknande metoder även föreslagits för reducerad modellering av olinjära strukturdynamiska problem. Detta utgör däremot fortfarande ett aktivt forskningsområde.

Utifrån samma principer som vid reducering av linjära system kan geometriskt olinjära modeller reduceras genom att responsen uttrycks i modala amplituder. Till skillnad från linjärdynamiska tillämpningar, där relevanta modformer ofta har låga egenfrekvenser, kan det vara väsentligt att beakta högfrekventa moder, som typiskt har egenfrekvenser avsevärt högre än lastens frekvensinnehåll. Ett systematiskt val av modformer utgör därför en av svårigheterna vid reducerad modellering av geometriskt olinjära strukturer. De modala responserna blir även
olinjärt kopplade. För att möjliggöra en tidseffektiv dynamisk analys finns därför behov av tekniker för effektiv tidsintegrering.

Beräkningsmodeller som inkluderar lokalt begränsade olinjäriteter kan reduceras genom dynamisk substrukturering. Med detta angreppsätt kan exempelvis substrukturer som förblir linjärelastiska modelleras effektivt utifrån modformer, medan förfinande modeller kan användas för delar med olinjär respons. För att möjliggöra beräkningseffektiva modeller krävs dock tekniker för att begränsa antalet frihetsgrader i gränssnitt mellan olika substrukturer.

I avhandlingen undersöks strategier för reducerad modellering av olinjära strukturdynamiska problem, med fokus på tillämpningar gällande betongkonstruktioner belastade av explosionslast samt glasstrukturer belastade av stötlast. I båda dessa tillämpningar är spröda brott ofta kritiska, varför det blir speciellt viktigt att etablera beräkningsmodeller med god noggrannhet. Vidare är det, för att säkerställa ett korrekt strukturbeteende, väsentligt att ta hänsyn till
olinjära effekter.

Vid dimensionering av glasbarriärer, såsom glasfasader och glasräcken, utgör stötlast ofta ett kritiskt lastfall. I detta arbete har modelleringsstrategier tagits fram för beräkning av elastisk respons för plana glaspaneler belastade av standardiserade stötlaster, vilka representerar en människa som faller mot glaset. Eftersom glasets tjocklek vanligtvis är liten i förhållande till spännvidd påverkas strukturresponsen i hög grad av andra ordningens effekter. För att hantera dessa
effekter formulerades geometriskt olinjära reducerade modeller. Mer specifikt approximerades responsen utifrån böjmoder och en uppsättning tillhörande membranmoder. Vidare utvecklades en olinjär en-frihetsgradsmodell för impaktorn samt tekniker för effektiv modellering av interaktion mellan impaktor och glaspanel. Beräknad respons utvärderades utifrån experimentella data och detaljerade finita elementmodeller. Framtagen reducerad modell visades prediktera viktiga resultat, såsom största huvudspänningar i glaspanel, med god noggrannhet.

Modelleringsstrategier har även utvecklats för analys av betongkonstruktioner belastade av explosionslast. Mer specifikt användes dynamisk substrukturering för att formulera reducerade modeller med flytleder i fördefinierade positioner. Föreslagen modelleringsmetod möjliggör effektiva beräkningar med god precision, vilket kan vara särskilt viktigt vid dimensionering med hänsyn till spröda brott.

Slutligen presenteras en översikt av olika tekniker för reducerad modellering, vilket i ett bredare perspektiv utgör en grund för vidare utveckling av beräkningseffektiva modeller inom olika strukturdynamiska tillämpningar. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Dr. Tiso, Paolo, ETH Zürich, Switzerland.
organization
alternative title
Reducerad modellering och substrukturering : Tillämpningar inom olinjär strukturdynamik
publishing date
type
Thesis
publication status
published
subject
keywords
Reduced order modeling, Substructuring, Nonlinear dynamics, Geometrically nonlinear, Modal derivatives, Blast loading, Soft-body impact, Glass structures
pages
259 pages
publisher
Lund University
defense location
Lecture Hall V:B, building V, John Ericssons väg 1, Faculty of Engineering LTH, Lund University, Lund.
defense date
2024-04-11 09:00:00
ISBN
978-91-7895-996-9
978-91-7895-997-6
project
Reduced Order Modeling and Substructuring - Applications in Nonlinear Structural Dynamics
language
English
LU publication?
yes
id
b57300d5-19e7-423a-a882-0b187183f32e
date added to LUP
2024-03-14 08:48:11
date last changed
2024-03-22 11:53:14
@phdthesis{b57300d5-19e7-423a-a882-0b187183f32e,
  abstract     = {{A structural design process typically involves various load cases for which a sufficient load-bearing capacity must be demonstrated. In addition to static load cases, a verification of dynamic loads, such as blast and impact loading, may be required. To this end, the response can be estimated using computational models representing an idealized structure, often formulated using the finite element method. In contrast to static analyses, a dynamic response analysis generally requires some form of time (or frequency) discretization. Furthermore, to properly capture the structural behavior, it can be necessary to consider nonlinear effects, e.g., due to contact conditions, nonlinear material behaviors, or geometrically nonlinear effects. The repeated solution in time of large nonlinear finite element models can be computationally expensive and time-consuming. Consequently, there is a need for computationally efficient modeling approaches, allowing for an interactive design process where alternative designs may be tested in a time-efficient manner.<br/><br/>By generating a reduced order model, the aim is to reduce the system size while maintaining sufficient accuracy of important output quantities. Hence, the computational cost can be reduced by analyzing a smaller, approximate system. For continuous structural dynamics problems discretized using the finite element method, reduced order models can be obtained by introducing a reduction basis. More specifically, the response is approximated using a set of time-independent displacement fields, referred to as mode shapes, which constitute the basis vectors of the modal basis. This approach is well-established and frequently used within linear structural dynamics. In the context of nonlinear structural dynamics, modal methods for reduced order modeling have gained more prominence during the last decades and is still an active area of research.<br/><br/>In the dissertation, strategies for nonlinear reduced order modeling are developed on the basis of structural engineering applications within two different areas; namely, concerning concrete structures subjected to blast loading and glass structures subjected to impact loading. Some of the challenges with regard to structural dynamics modeling are similar. In particular, brittle failure modes are often critical, why the response of higher order modes can be of particular importance. Moreover, an accurate representation of the structural behavior typically necessitates models considering nonlinear behaviors. More specifically, the dynamic problems involve localized nonlinearities in the form of contact conditions and joints, as well as geometric nonlinearity which, in contrast, is a distributed nonlinearity where degrees of freedoms throughout the structure are nonlinearly coupled.<br/><br/>Impact loading is a fundamental load case in design of glazed barriers, such as full-height facades and balustrades, which often governs the design. In this work, modeling strategies were developed for predicting the pre-failure elastic response of flat glass panels subjected to a standardized impactor, which represent a human body falling towards the glass panel. The response of glass panels, having a small thickness compared to the span width, are typically characterized by bending-stretching coupling effects. To consider these effects, which result in a geometrically nonlinear behavior, reduction bases were generated using bending modes and the associated static modal derivatives, corresponding to the second order terms in a Taylor’s expansion of the quasi-static displacement field. Moreover, approximate techniques for modeling contact were proposed, and a nonlinear viscous single-degree-of-freedom model was developed for reduced modeling of the impacting body. The response was evaluated based on experimental data and detailed finite element models. For the studied load cases, the proposed model was shown to predict important output quantities, such as the glass principal stresses, with high accuracy.<br/><br/>Furthermore, computationally efficient analysis techniques were developed for analysis of concrete structures subjected to blast loading. Specifically, reduced models including pre-defined plastic joints were developed by means of dynamic substructuring. A comparison to commonly used modeling strategies, which uses equivalent single-degree-of-freedom systems, suggests that the developed models provide a significantly improved accuracy of shear forces. This can be critical in a verification of brittle failure modes, such as diagonal and direct shear failure.<br/><br/>Finally, a review of various reduced order modeling techniques is presented which, in a broader perspective, provide a basis for developing reduced order models in various structural dynamics applications.<br/>}},
  author       = {{Andersson, Linus}},
  isbn         = {{978-91-7895-996-9}},
  keywords     = {{Reduced order modeling; Substructuring; Nonlinear dynamics; Geometrically nonlinear; Modal derivatives; Blast loading; Soft-body impact; Glass structures}},
  language     = {{eng}},
  publisher    = {{Lund University}},
  school       = {{Lund University}},
  title        = {{Reduced Order Modeling and Substructuring : Applications in Nonlinear Structural Dynamics}},
  url          = {{https://lup.lub.lu.se/search/files/177089038/Linus_Andersson_Thesis_web_TVSM1034.pdf}},
  year         = {{2024}},
}