Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers : Granules, dissolved starch, and non-solvent precipitates

Saari, Hisfazilah LU ; Wahlgren, Marie LU orcid ; Rayner, Marilyn LU ; Sjöö, Malin LU and Matos, María (2019) In PLoS ONE 14(2).
Abstract

This work investigates the stability of emulsions prepared by using octenyl succinic anhydride (OSA)-modified waxy maize starch in the form of granules, dissolved starch, and non-solvent precipitated starch as Pickering emulsion stabilisers. The aim of this study was to investigate the effects of different forms of starches on the stability of emulsion using light microscopy, light scattering, and static multiple light scattering. All starch samples were hydrophobically modified with 3% (w/w) n-octenyl succinyl anhydride (OSA). Starch polymer solutions were prepared by dissolving OSA- modified starch in water in an autoclave at 140C. Non-solvent precipitates were obtained through ethanol precipitation of dissolved waxy maize. The... (More)

This work investigates the stability of emulsions prepared by using octenyl succinic anhydride (OSA)-modified waxy maize starch in the form of granules, dissolved starch, and non-solvent precipitated starch as Pickering emulsion stabilisers. The aim of this study was to investigate the effects of different forms of starches on the stability of emulsion using light microscopy, light scattering, and static multiple light scattering. All starch samples were hydrophobically modified with 3% (w/w) n-octenyl succinyl anhydride (OSA). Starch polymer solutions were prepared by dissolving OSA- modified starch in water in an autoclave at 140C. Non-solvent precipitates were obtained through ethanol precipitation of dissolved waxy maize. The stability of the oil/water emulsions were different for the three forms of starches used. The granule-based emulsions were unstable, with only a small proportion of the granules adsorbed onto oil droplets, as viewed under a light microscope. The emulsions were observed to cream after 2 hours. The dissolved starch and non-solvent precipitate-based emulsions were stable towards creaming for months, and they had almost 100% emulsifying index (EI = 1) by visual observation and EI ~ 0.9 by multiple light scattering measurements. The results from light microscopy and multiple light scattering measurements indicated the occurrence of coalescence for all three types of emulsions. The coalescence was fastest within days for the granule stabilised system while it was slower both for the dissolved starch and non-solvent precipitate-based emulsions. The latter demonstrated the least degree of coalescence over time. Thus, it was concluded that differences in starch particle size and molecular structure influenced the emulsion droplet size and stability. A decreased particle size correlates to a decrease in droplet size, thus increasing stabilisation against creaming. However, stability towards coalescence was low for the large granules but was best for the non-solvent precipitate starch indicating that there is a window of optimal particle size for stability. Thus, best emulsifying properties were obtained with the non-solvent precipitates (~ 120 nm particle size) where the emulsions remained stable after one year of storage. In conclusion, this study illustrated the potentiality of non-solvent precipitated starch as emulsion stabilizers.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
14
issue
2
article number
e0210690
publisher
Public Library of Science (PLoS)
external identifiers
  • scopus:85061161677
  • pmid:30726246
ISSN
1932-6203
DOI
10.1371/journal.pone.0210690
language
English
LU publication?
yes
id
b6a201df-502e-4000-bf5e-0933280a2831
date added to LUP
2019-02-15 08:12:53
date last changed
2024-04-01 20:21:05
@article{b6a201df-502e-4000-bf5e-0933280a2831,
  abstract     = {{<p>This work investigates the stability of emulsions prepared by using octenyl succinic anhydride (OSA)-modified waxy maize starch in the form of granules, dissolved starch, and non-solvent precipitated starch as Pickering emulsion stabilisers. The aim of this study was to investigate the effects of different forms of starches on the stability of emulsion using light microscopy, light scattering, and static multiple light scattering. All starch samples were hydrophobically modified with 3% (w/w) n-octenyl succinyl anhydride (OSA). Starch polymer solutions were prepared by dissolving OSA- modified starch in water in an autoclave at 140C. Non-solvent precipitates were obtained through ethanol precipitation of dissolved waxy maize. The stability of the oil/water emulsions were different for the three forms of starches used. The granule-based emulsions were unstable, with only a small proportion of the granules adsorbed onto oil droplets, as viewed under a light microscope. The emulsions were observed to cream after 2 hours. The dissolved starch and non-solvent precipitate-based emulsions were stable towards creaming for months, and they had almost 100% emulsifying index (EI = 1) by visual observation and EI ~ 0.9 by multiple light scattering measurements. The results from light microscopy and multiple light scattering measurements indicated the occurrence of coalescence for all three types of emulsions. The coalescence was fastest within days for the granule stabilised system while it was slower both for the dissolved starch and non-solvent precipitate-based emulsions. The latter demonstrated the least degree of coalescence over time. Thus, it was concluded that differences in starch particle size and molecular structure influenced the emulsion droplet size and stability. A decreased particle size correlates to a decrease in droplet size, thus increasing stabilisation against creaming. However, stability towards coalescence was low for the large granules but was best for the non-solvent precipitate starch indicating that there is a window of optimal particle size for stability. Thus, best emulsifying properties were obtained with the non-solvent precipitates (~ 120 nm particle size) where the emulsions remained stable after one year of storage. In conclusion, this study illustrated the potentiality of non-solvent precipitated starch as emulsion stabilizers.</p>}},
  author       = {{Saari, Hisfazilah and Wahlgren, Marie and Rayner, Marilyn and Sjöö, Malin and Matos, María}},
  issn         = {{1932-6203}},
  language     = {{eng}},
  month        = {{02}},
  number       = {{2}},
  publisher    = {{Public Library of Science (PLoS)}},
  series       = {{PLoS ONE}},
  title        = {{A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers : Granules, dissolved starch, and non-solvent precipitates}},
  url          = {{http://dx.doi.org/10.1371/journal.pone.0210690}},
  doi          = {{10.1371/journal.pone.0210690}},
  volume       = {{14}},
  year         = {{2019}},
}