Characterisation of worn WC tool using STEM-EDS aided by principal component analysis
(2021) In Journal of Microscopy 283(1). p.64-73- Abstract
Interdiffusion and chemical reactions contribute to tool wear in metal machining. Increased understanding of these processes, through characterisation of worn tools, can facilitate design of more resilient materials through chemical and diffusional passivation. However, the unknown reaction conditions, the large number of elements, and the formation of interspersed phases makes for a complex analysis. Here, we demonstrate the use of scanning transmission electron microscopy and energy dispersive X-ray spectroscopy for characterising the interaction layer between a titanium alloy and a cemented carbide tool. Principal component analysis is used to find chemical correlations and help separate signals from embedded phases. Crucially, we... (More)
Interdiffusion and chemical reactions contribute to tool wear in metal machining. Increased understanding of these processes, through characterisation of worn tools, can facilitate design of more resilient materials through chemical and diffusional passivation. However, the unknown reaction conditions, the large number of elements, and the formation of interspersed phases makes for a complex analysis. Here, we demonstrate the use of scanning transmission electron microscopy and energy dispersive X-ray spectroscopy for characterising the interaction layer between a titanium alloy and a cemented carbide tool. Principal component analysis is used to find chemical correlations and help separate signals from embedded phases. Crucially, we evaluate the required X-ray count statistics from simulated spectrum images and theory prior to the experiment. We find no indications of intermediate phases between the original WC and the metallic W interaction layer. Furthermore, we find enrichment of minor constituents in the titanium alloy closest to the tool which alter the solubility of out-diffusing species, suggesting strong interrelations between the diffusion processes.
(Less)
- author
- Lazar, Isac LU ; Lindvall, Rebecka LU ; Lenrick, Filip LU ; Bushlya, Volodymyr LU and Ek, Martin LU
- organization
- publishing date
- 2021-07-01
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- EDS, metal cutting, PCA, spectrum simulation, titanium, wear
- in
- Journal of Microscopy
- volume
- 283
- issue
- 1
- pages
- 10 pages
- publisher
- John Wiley & Sons Inc.
- external identifiers
-
- pmid:33788272
- scopus:85104897377
- ISSN
- 0022-2720
- DOI
- 10.1111/jmi.13009
- project
- Skärverktyg under luppen – in situ studier av förstärkning och degradering och av ytbeläggningar på atomär nivå
- language
- English
- LU publication?
- yes
- id
- b8d73498-1f05-42a6-aa9d-8d84073a9d9a
- date added to LUP
- 2021-05-11 10:57:58
- date last changed
- 2024-11-17 03:49:37
@article{b8d73498-1f05-42a6-aa9d-8d84073a9d9a, abstract = {{<p>Interdiffusion and chemical reactions contribute to tool wear in metal machining. Increased understanding of these processes, through characterisation of worn tools, can facilitate design of more resilient materials through chemical and diffusional passivation. However, the unknown reaction conditions, the large number of elements, and the formation of interspersed phases makes for a complex analysis. Here, we demonstrate the use of scanning transmission electron microscopy and energy dispersive X-ray spectroscopy for characterising the interaction layer between a titanium alloy and a cemented carbide tool. Principal component analysis is used to find chemical correlations and help separate signals from embedded phases. Crucially, we evaluate the required X-ray count statistics from simulated spectrum images and theory prior to the experiment. We find no indications of intermediate phases between the original WC and the metallic W interaction layer. Furthermore, we find enrichment of minor constituents in the titanium alloy closest to the tool which alter the solubility of out-diffusing species, suggesting strong interrelations between the diffusion processes.</p>}}, author = {{Lazar, Isac and Lindvall, Rebecka and Lenrick, Filip and Bushlya, Volodymyr and Ek, Martin}}, issn = {{0022-2720}}, keywords = {{EDS; metal cutting; PCA; spectrum simulation; titanium; wear}}, language = {{eng}}, month = {{07}}, number = {{1}}, pages = {{64--73}}, publisher = {{John Wiley & Sons Inc.}}, series = {{Journal of Microscopy}}, title = {{Characterisation of worn WC tool using STEM-EDS aided by principal component analysis}}, url = {{http://dx.doi.org/10.1111/jmi.13009}}, doi = {{10.1111/jmi.13009}}, volume = {{283}}, year = {{2021}}, }