Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Numerical and experimental investigation of tool geometry effect on residual stresses in orthogonal machining of Inconel 718

Liu, Yang LU ; Xu, Dongdong ; Agmell, Mathias LU ; Saoubi, Rachid M. ; Ahadi, Aylin LU ; Stahl, Jan Eric LU and Zhou, Jinming LU (2021) In Simulation Modelling Practice and Theory 106.
Abstract

Residual stress has become more important than ever with the increasing performance requirement of components especially for those applied in safety-critical areas. As the machining process is fundamentally correlated with the acquired component properties, it is essential to fully understand the formation mechanism of residual stresses in the cutting process and its influence on the performance of the component. This paper presents results based on numerical and experimental analysis on the effect of tool geometry on thermal-mechanical load and residual stresses in orthogonal machining Inconel718 alloy. The Coupled Eulerian-Lagrangian (CEL) method is used to simulate the effect of tool geometry on temperatures, forces, equivalent... (More)

Residual stress has become more important than ever with the increasing performance requirement of components especially for those applied in safety-critical areas. As the machining process is fundamentally correlated with the acquired component properties, it is essential to fully understand the formation mechanism of residual stresses in the cutting process and its influence on the performance of the component. This paper presents results based on numerical and experimental analysis on the effect of tool geometry on thermal-mechanical load and residual stresses in orthogonal machining Inconel718 alloy. The Coupled Eulerian-Lagrangian (CEL) method is used to simulate the effect of tool geometry on temperatures, forces, equivalent plastic strains, and residual stresses. The local normal/tangential stress is introduced to determine the degree of the tensile plastic deformation induced by the tool. It is observed that a negative rake angle and a sharp edge radius tool tend to generate more compressive stress on the machined surface than the ones generated with positive rake angle tools and/or lager edge radius. Besides, an increase in flank wear produces less magnitude of compressive stress in subsurface due to a decreased local normal stress caused by increased flank contact length.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
CEL, Inconel718, Machining, Residual stress, Surface integrity
in
Simulation Modelling Practice and Theory
volume
106
article number
102187
publisher
Elsevier
external identifiers
  • scopus:85091770616
ISSN
1569-190X
DOI
10.1016/j.simpat.2020.102187
language
English
LU publication?
yes
id
be8319d1-7a25-46f4-8209-abe9178f5ccb
date added to LUP
2020-10-23 09:12:28
date last changed
2023-11-20 12:36:17
@article{be8319d1-7a25-46f4-8209-abe9178f5ccb,
  abstract     = {{<p>Residual stress has become more important than ever with the increasing performance requirement of components especially for those applied in safety-critical areas. As the machining process is fundamentally correlated with the acquired component properties, it is essential to fully understand the formation mechanism of residual stresses in the cutting process and its influence on the performance of the component. This paper presents results based on numerical and experimental analysis on the effect of tool geometry on thermal-mechanical load and residual stresses in orthogonal machining Inconel718 alloy. The Coupled Eulerian-Lagrangian (CEL) method is used to simulate the effect of tool geometry on temperatures, forces, equivalent plastic strains, and residual stresses. The local normal/tangential stress is introduced to determine the degree of the tensile plastic deformation induced by the tool. It is observed that a negative rake angle and a sharp edge radius tool tend to generate more compressive stress on the machined surface than the ones generated with positive rake angle tools and/or lager edge radius. Besides, an increase in flank wear produces less magnitude of compressive stress in subsurface due to a decreased local normal stress caused by increased flank contact length.</p>}},
  author       = {{Liu, Yang and Xu, Dongdong and Agmell, Mathias and Saoubi, Rachid M. and Ahadi, Aylin and Stahl, Jan Eric and Zhou, Jinming}},
  issn         = {{1569-190X}},
  keywords     = {{CEL; Inconel718, Machining; Residual stress; Surface integrity}},
  language     = {{eng}},
  publisher    = {{Elsevier}},
  series       = {{Simulation Modelling Practice and Theory}},
  title        = {{Numerical and experimental investigation of tool geometry effect on residual stresses in orthogonal machining of Inconel 718}},
  url          = {{http://dx.doi.org/10.1016/j.simpat.2020.102187}},
  doi          = {{10.1016/j.simpat.2020.102187}},
  volume       = {{106}},
  year         = {{2021}},
}