Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Adaptive Inhibition for Optimal Energy Consumption by Animals, Robots and Neurocomputers

Tjøstheim, Trond A. LU ; Johansson, Birger LU orcid and Balkenius, Christian LU orcid (2022) 16th International Conference on Simulation of Adaptive Behavior In Lecture Notes in Computer Science 13499. p.103-114
Abstract
In contrast to artificial systems, animals must forage for food. In biology, the availability of energy is typically both precarious and highly variable. Most importantly, the very structure of organisms is dependent on the continuous metabolism of nutrients into ATP, and its use in maintaining homeostasis. This means that energy is at the centre of all biological processes, including cognition. So far, in computational neuroscience and artificial intelligence, this issue has been overlooked. In simulations of cognitive processes, whether at the neural level, or the level of larger brain systems, the constant and ample supply of energy is implicitly assumed. However, studies from the biological sciences indicate that much of the brain’s... (More)
In contrast to artificial systems, animals must forage for food. In biology, the availability of energy is typically both precarious and highly variable. Most importantly, the very structure of organisms is dependent on the continuous metabolism of nutrients into ATP, and its use in maintaining homeostasis. This means that energy is at the centre of all biological processes, including cognition. So far, in computational neuroscience and artificial intelligence, this issue has been overlooked. In simulations of cognitive processes, whether at the neural level, or the level of larger brain systems, the constant and ample supply of energy is implicitly assumed. However, studies from the biological sciences indicate that much of the brain’s processes are in place to maintain allostasis, both of the brain itself and of the organism as a whole. This also relates to the fact that different neural populations have different energy needs. Many artificial systems, including robots and laptop computers, have circuitry in place to measure energy consumption. However, this information is rarely used in controlling the details of cognitive processing to minimize energy consumption. In this work, we make use of some of this circuitry and explicitly connect it to the processing requirements of different cognitive subsystems and show first how a cognitive model can learn the relation between cognitive ‘effort’, the quality of the computations and energy consumption, and second how an adaptive inhibitory mechanism can learn to only use the amount of energy minimally needed for a particular task. We argue that energy conservation is an important goal of central inhibitory mechanisms, in addition to its role in attentional and behavioral selection. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
keywords
cognitive science, energy, metabolic cost, metabolic regulation, Cognitive resources, Robots, Energy consumption, Adaptive inhibition
host publication
From Animals to Animats 16 : 16th International Conference on Simulation of Adaptive Behavior, SAB 2022 Cergy-Pontoise, France, September 20–23, 2022 Proceedings - 16th International Conference on Simulation of Adaptive Behavior, SAB 2022 Cergy-Pontoise, France, September 20–23, 2022 Proceedings
series title
Lecture Notes in Computer Science
editor
Cañamero, Lola ; Gaussier, Philippe ; Wilson, Myra ; Boucenna, Sofiane and Cuperlier, Nicolas
volume
13499
pages
11 pages
publisher
Springer
conference name
16th International Conference on Simulation of Adaptive Behavior
conference location
Cergy-Pontoise, France
conference dates
2022-09-20 - 2022-09-23
external identifiers
  • scopus:85138832653
ISSN
1611-3349
0302-9743
ISBN
978-3-031-16770-6
978-3-031-16769-0
DOI
10.1007/978-3-031-16770-6_9
language
English
LU publication?
yes
id
c213b5f9-0ac9-40a2-a6f2-9e133b20c740
date added to LUP
2022-09-11 16:49:31
date last changed
2024-04-03 18:04:00
@inproceedings{c213b5f9-0ac9-40a2-a6f2-9e133b20c740,
  abstract     = {{In contrast to artificial systems, animals must forage for food. In biology, the availability of energy is typically both precarious and highly variable. Most importantly, the very structure of organisms is dependent on the continuous metabolism of nutrients into ATP, and its use in maintaining homeostasis. This means that energy is at the centre of all biological processes, including cognition. So far, in computational neuroscience and artificial intelligence, this issue has been overlooked. In simulations of cognitive processes, whether at the neural level, or the level of larger brain systems, the constant and ample supply of energy is implicitly assumed. However, studies from the biological sciences indicate that much of the brain’s processes are in place to maintain allostasis, both of the brain itself and of the organism as a whole. This also relates to the fact that different neural populations have different energy needs. Many artificial systems, including robots and laptop computers, have circuitry in place to measure energy consumption. However, this information is rarely used in controlling the details of cognitive processing to minimize energy consumption. In this work, we make use of some of this circuitry and explicitly connect it to the processing requirements of different cognitive subsystems and show first how a cognitive model can learn the relation between cognitive ‘effort’, the quality of the computations and energy consumption, and second how an adaptive inhibitory mechanism can learn to only use the amount of energy minimally needed for a particular task. We argue that energy conservation is an important goal of central inhibitory mechanisms, in addition to its role in attentional and behavioral selection.}},
  author       = {{Tjøstheim, Trond A. and Johansson, Birger and Balkenius, Christian}},
  booktitle    = {{From Animals to Animats 16 : 16th International Conference on Simulation of Adaptive Behavior, SAB 2022 Cergy-Pontoise, France, September 20–23, 2022 Proceedings}},
  editor       = {{Cañamero, Lola and Gaussier, Philippe and Wilson, Myra and Boucenna, Sofiane and Cuperlier, Nicolas}},
  isbn         = {{978-3-031-16770-6}},
  issn         = {{1611-3349}},
  keywords     = {{cognitive science; energy; metabolic cost; metabolic regulation; Cognitive resources; Robots; Energy consumption; Adaptive inhibition}},
  language     = {{eng}},
  month        = {{09}},
  pages        = {{103--114}},
  publisher    = {{Springer}},
  series       = {{Lecture Notes in Computer Science}},
  title        = {{Adaptive Inhibition for Optimal Energy Consumption by Animals, Robots and Neurocomputers}},
  url          = {{http://dx.doi.org/10.1007/978-3-031-16770-6_9}},
  doi          = {{10.1007/978-3-031-16770-6_9}},
  volume       = {{13499}},
  year         = {{2022}},
}