Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Water Limitation in Forest Soils Regulates the Increase in Weathering Rates under Climate Change

Belyazid, Salim LU ; Akselsson, Cecilia LU and Zanchi, Giuliana LU (2022) In Forests 13(2).
Abstract

Climate change is generally expected to have a positive effect on weathering rates, due to the strong temperature dependence of the weathering process. Important feedback mechanisms such as changes in soil moisture, tree growth and organic matter decomposition can affect the response of weathering rates to climate change. In this study, the dynamic forest ecosystem model ForSAFE, with mechanistic descriptions of tree growth, organic matter decomposition, weathering, hydrology and ion exchange processes, is used to investigate the effects of future climate scenarios on base cation weathering rates. In total, 544 productive coniferous forest sites from the Swedish National Forest Inventory are modelled, and differences in weathering... (More)

Climate change is generally expected to have a positive effect on weathering rates, due to the strong temperature dependence of the weathering process. Important feedback mechanisms such as changes in soil moisture, tree growth and organic matter decomposition can affect the response of weathering rates to climate change. In this study, the dynamic forest ecosystem model ForSAFE, with mechanistic descriptions of tree growth, organic matter decomposition, weathering, hydrology and ion exchange processes, is used to investigate the effects of future climate scenarios on base cation weathering rates. In total, 544 productive coniferous forest sites from the Swedish National Forest Inventory are modelled, and differences in weathering responses to changes in climate from two Global Climate Models are investigated. The study shows that weathering rates at the simulated sites are likely to increase, but not to the extent predicted by a direct response to elevated air temperatures. Besides the result that increases in soil temperatures are less evident than those in air temperature, the study shows that soil moisture availability has a strong potential to limit the expected response to increased temperature. While changes in annual precipitation may not indicate further risk for more severe water deficits, seasonal differences show a clear difference between winters and summers. Taking into account the seasonal variation, the study shows that reduced soil water availability in the summer seasons will strongly limit the expected gain in weathering associated with higher temperatures.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Base cations, Climate change, Dynamic modelling, Forest soils, Mineral weathering
in
Forests
volume
13
issue
2
article number
310
publisher
MDPI AG
external identifiers
  • scopus:85125015145
ISSN
1999-4907
DOI
10.3390/f13020310
language
English
LU publication?
yes
id
c3264ebd-a619-4df1-b005-57325685ed3d
date added to LUP
2022-06-17 13:17:05
date last changed
2022-06-17 13:17:05
@article{c3264ebd-a619-4df1-b005-57325685ed3d,
  abstract     = {{<p>Climate change is generally expected to have a positive effect on weathering rates, due to the strong temperature dependence of the weathering process. Important feedback mechanisms such as changes in soil moisture, tree growth and organic matter decomposition can affect the response of weathering rates to climate change. In this study, the dynamic forest ecosystem model ForSAFE, with mechanistic descriptions of tree growth, organic matter decomposition, weathering, hydrology and ion exchange processes, is used to investigate the effects of future climate scenarios on base cation weathering rates. In total, 544 productive coniferous forest sites from the Swedish National Forest Inventory are modelled, and differences in weathering responses to changes in climate from two Global Climate Models are investigated. The study shows that weathering rates at the simulated sites are likely to increase, but not to the extent predicted by a direct response to elevated air temperatures. Besides the result that increases in soil temperatures are less evident than those in air temperature, the study shows that soil moisture availability has a strong potential to limit the expected response to increased temperature. While changes in annual precipitation may not indicate further risk for more severe water deficits, seasonal differences show a clear difference between winters and summers. Taking into account the seasonal variation, the study shows that reduced soil water availability in the summer seasons will strongly limit the expected gain in weathering associated with higher temperatures.</p>}},
  author       = {{Belyazid, Salim and Akselsson, Cecilia and Zanchi, Giuliana}},
  issn         = {{1999-4907}},
  keywords     = {{Base cations; Climate change; Dynamic modelling; Forest soils; Mineral weathering}},
  language     = {{eng}},
  month        = {{02}},
  number       = {{2}},
  publisher    = {{MDPI AG}},
  series       = {{Forests}},
  title        = {{Water Limitation in Forest Soils Regulates the Increase in Weathering Rates under Climate Change}},
  url          = {{http://dx.doi.org/10.3390/f13020310}},
  doi          = {{10.3390/f13020310}},
  volume       = {{13}},
  year         = {{2022}},
}