Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Managing Uncertainty in Environmental and Cost Life Cycle Studies of Building Design

Ylmén, Peter LU (2020)
Abstract
The building and construction sector accounted for 39% of energy and process-related carbon dioxide emissions in 2018 and global emissions from buildings increased by 2% for the second consecutive year. It is therefore important to find building design solutions that minimise the climate impact of buildings. At the same time, the production of residential houses and commercial buildings must be cost-efficient in order to provide housing and workplaces at reasonable prices.

Several studies have recently pointed out that although the energy used for operating the buildings has a large environmental impact, the manufacturing, replacement and waste management of building material and products can represent an equally large share of... (More)
The building and construction sector accounted for 39% of energy and process-related carbon dioxide emissions in 2018 and global emissions from buildings increased by 2% for the second consecutive year. It is therefore important to find building design solutions that minimise the climate impact of buildings. At the same time, the production of residential houses and commercial buildings must be cost-efficient in order to provide housing and workplaces at reasonable prices.

Several studies have recently pointed out that although the energy used for operating the buildings has a large environmental impact, the manufacturing, replacement and waste management of building material and products can represent an equally large share of the total environmental impact of buildings. It is thus important to consider the complete life cycle when evaluating the design alternatives of buildings. There is a risk of missing important environmental and economic aspects if only a portion of the life cycle is addressed during the evaluation. This will lead to faulty conclusions and sub-optimal solutions of the building design.

Available and mature life cycle tools for evaluating buildings and other products are life cycle assessment (LCA) and life cycle cost analysis (LCCA). Even for simple products, the manufacturing chain from raw material acquisition, production and use through to waste management is complex and intertwined with material flows of products outside the studied object. This means that even if the methods are mature there are many assumptions and choices to be made when evaluating the effect on for example the environment and cost of a building during its life cycle. Conducting an LCA and LCCA for products and buildings is therefore time- and resource-demanding even for products with set production lines.

It is easier to make changes in the early design stages when there are fewer decisions that have been set, and the design freedom is larger. However, this also means that there is less data to base the life cycle studies on. As there are larger degrees of freedom, there are more available options to consider. When evaluating a design alternative based on the design process information, such as which products to use, manufactures, installations, user patterns and assembly methods might not have been decided yet. Conducting LCAs and LCCAs under these circumstances naturally involves greater uncertainties in the results than for products with fixed systems.

The work described in this thesis consists of a number of studies in which methods and procedures have been developed to facilitate evaluating building design alternatives using life cycle tools. The Effect and Consequences Evaluation (ECE) method describes how to establish the technical system boundaries in a consistent way. Its focus is on managing secondary effects that arise in different parts of the building as an effect of the design alternative. The secondary effects were shown to have significant impact on the results in a case study. The Decision Choices Procedure (DCP) was also developed within the project. It provides a means to manage choices and their options in a structured way when life cycle tools are used as design decision support. Another studied issue was how to obtain reliable data on the materials and products used in buildings. A process enabling contractors to report data on site in a form that facilitates life cycle studies was explored for an office building. To demonstrate how to utilise the developed methods and procedures several case studies were conducted. Four case studies were made to evaluate each issue separately and an additional one to demonstrate how to combine the methods when conducting an LCA and LCCA, concerning how to optimise insulation thickness in a building.

The emphasis of this study has been more on accuracy of the results rather than simplification in order to mitigate erroneous conclusions regarding environmentally friendly, cost-effective alternatives for the building design. However, a simplification of life cycle studies does come from providing a structured and more consistent process of managing technical system boundaries and uncertainties in design optimisation. Adopting the approach described in this study will likely provide design conclusions with higher quality as well as save time and effort when conducting the study.
(Less)
Abstract (Swedish)
Byggnadssektorn stod för 39 % av energi- och processrelaterade koldioxidutsläpp år 2018 och globala utsläpp från byggnader ökade med 2 % för det andra året i rad. Därför är det viktigt att ta fram lösningar på byggnadsdesign som minimerar klimatpåverkan från byggnader. Samtidigt som produktionen av bostäder och kommersiella byggnader måste vara kostnadseffektiv för att skapa boende och arbetsplatser till en rimlig kostnad.

På senare tid har flera studier nyligen påvisat att även om energianvändningen för uppvärmningen och drift har stor miljöpåverkan så kan tillverkning, utbyte och avfallshantering av byggnader ha en motsvarande magnitud av byggnaders totala miljöpåverkan. Det är därför viktigt att ta hänsyn till hela livscykeln... (More)
Byggnadssektorn stod för 39 % av energi- och processrelaterade koldioxidutsläpp år 2018 och globala utsläpp från byggnader ökade med 2 % för det andra året i rad. Därför är det viktigt att ta fram lösningar på byggnadsdesign som minimerar klimatpåverkan från byggnader. Samtidigt som produktionen av bostäder och kommersiella byggnader måste vara kostnadseffektiv för att skapa boende och arbetsplatser till en rimlig kostnad.

På senare tid har flera studier nyligen påvisat att även om energianvändningen för uppvärmningen och drift har stor miljöpåverkan så kan tillverkning, utbyte och avfallshantering av byggnader ha en motsvarande magnitud av byggnaders totala miljöpåverkan. Det är därför viktigt att ta hänsyn till hela livscykeln vid utvärdering av designalternativ för byggnader. Det finns en risk att viktiga utsläpp och kostnadsaspekter förbises om bara en del av livscykeln beaktas vid utvärderingen. Detta kan leda till felaktiga slutsatser och suboptimala lösningar vid design av byggnader.

Tillgängliga och beprövade livscykelverktyg för att utvärdera byggnader och andra produkter är livscykelanalys (LCA) och livscykelkostandsberäkningar (LCC). Till och med för enkla produkter är tillverkningskedjan från råmaterialutvinning, tillverkning, användning och sluthantering komplex och sammanflätade med materialflöden för andra produkter än den studerade. Detta betyder att även om metoderna har långvarig utvecklig så finns det många antaganden och val som behöver göras när miljöpåverkan och kostnader utvärderas för en byggnads livscykel. Genomförande av LCA och LCC kräver därför mycket tid och resurser även för produkter med fasta produktionslinjer.

När en byggnad designas är det lättare att genomföra ändringar i början, då färre besluts har tagits och designfriheten är större. Dock medför det även att det finns mindre data att använda i en livscykelstudie. Eftersom det finns fler frihetsgrader så är det fler val att hantera. När ett designalternativ ska utvärderas är det inte säkert att det är bestämt vilka produkter som ska användas, tillverkare, typ av installationer, användarmönster och monteringsmetoder. Att genomföra LCA och LCC under sådana förutsättningar kommer naturligtvis medföra större osäkerheter i resultaten är för produkter med bestämda system och förutsättningar.

Arbetet som beskrivs i den här avhandlingen består av flera studier där metoder och procedurer har utvecklats för att underlätta att utvärdera designalternativ för byggnader med hjälp av livscykelverktyg. Effekt- och konsekvensutvärderingsmetoden (ECE) beskriver hur tekniska systemgränser kan skapas på ett konsekvent sätt. Den fokuserar på hur sekundära effekter som uppkommer i andra delar av byggnaden än den som utvärderas ska hanteras. I en fallstudie visades att sekundära effekter kan ha betydande påverkan på resultaten. Även besluts- och valproceduren (DCP) utvecklades inom projektet. Den skapar förutsättningar att hantera valalternativ på ett strukturerat sätt när livscykelverktyg används för att ta fram beslutsunderlag. En annan fråga som studerats var hur pålitligt underlag kan skapas för inbyggda material och produkter. En process i vilken entreprenörerna på byggarbetsplatsen rapporterade materialdata i ett formulär utforskades för en kontorsbyggnad. För att demonsterara hur de utvecklade metoderna ska tillämpas utfördes flera fallstudier. Fyra fallstudier utvärderar de enskilda frågorna mer i detalj var för sig och ytterligare en visar hur man kan kombinera metoderna i LCA och LCC genom att optimera isolertjocklek för en byggnad.

Tyngdpunkten i arbetet har varit träffsäkerhet i resultaten snarare än förenklingar för att motverka felaktiga slutsatser kring vilka designalternativ som har låg miljöpåverkan och låga kostnader. Även om en viss förenkling erhålls genom att visa en mer strukturerad och konsekvent process för att hantera systemgränser och osäkerheter via designoptimering. Tillämpning av tillvägagångssättet som beskrivs i detta arbete kommer sannolikt att medföra slutsatser krig design med högre kvalitet samtidigt som det sparar tid och arbete vid genomförandet.
(Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Prof. Ekvall, Tomas, Chalmers, Gothenburg.
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Building design, life cycle, LCA, LCC, uncertainties, method
pages
165 pages
publisher
Building Physics, LTH, Lund University
defense location
Lecture hall V:B, building V, John Ericssons väg 1, Faculty of Engineering LTH, Lund University, Lund.
defense date
2020-11-03 13:00:00
ISBN
978-91-88722-71-3
978-91-88722-70-6
language
English
LU publication?
yes
id
ca14520e-dd9f-4cda-9114-bf52442f59bd
date added to LUP
2020-10-07 09:29:42
date last changed
2022-04-07 10:36:02
@phdthesis{ca14520e-dd9f-4cda-9114-bf52442f59bd,
  abstract     = {{The building and construction sector accounted for 39% of energy and process-related carbon dioxide emissions in 2018 and global emissions from buildings increased by 2% for the second consecutive year. It is therefore important to find building design solutions that minimise the climate impact of buildings. At the same time, the production of residential houses and commercial buildings must be cost-efficient in order to provide housing and workplaces at reasonable prices.<br/><br/>Several studies have recently pointed out that although the energy used for operating the buildings has a large environmental impact, the manufacturing, replacement and waste management of building material and products can represent an equally large share of the total environmental impact of buildings. It is thus important to consider the complete life cycle when evaluating the design alternatives of buildings. There is a risk of missing important environmental and economic aspects if only a portion of the life cycle is addressed during the evaluation. This will lead to faulty conclusions and sub-optimal solutions of the building design.<br/><br/>Available and mature life cycle tools for evaluating buildings and other products are life cycle assessment (LCA) and life cycle cost analysis (LCCA). Even for simple products, the manufacturing chain from raw material acquisition, production and use through to waste management is complex and intertwined with material flows of products outside the studied object. This means that even if the methods are mature there are many assumptions and choices to be made when evaluating the effect on for example the environment and cost of a building during its life cycle. Conducting an LCA and LCCA for products and buildings is therefore time- and resource-demanding even for products with set production lines. <br/><br/>It is easier to make changes in the early design stages when there are fewer decisions that have been set, and the design freedom is larger. However, this also means that there is less data to base the life cycle studies on. As there are larger degrees of freedom, there are more available options to consider. When evaluating a design alternative based on the design process information, such as which products to use, manufactures, installations, user patterns and assembly methods might not have been decided yet. Conducting LCAs and LCCAs under these circumstances naturally involves greater uncertainties in the results than for products with fixed systems.<br/><br/>The work described in this thesis consists of a number of studies in which methods and procedures have been developed to facilitate evaluating building design alternatives using life cycle tools. The Effect and Consequences Evaluation (ECE) method describes how to establish the technical system boundaries in a consistent way. Its focus is on managing secondary effects that arise in different parts of the building as an effect of the design alternative. The secondary effects were shown to have significant impact on the results in a case study. The Decision Choices Procedure (DCP) was also developed within the project. It provides a means to manage choices and their options in a structured way when life cycle tools are used as design decision support. Another studied issue was how to obtain reliable data on the materials and products used in buildings. A process enabling contractors to report data on site in a form that facilitates life cycle studies was explored for an office building. To demonstrate how to utilise the developed methods and procedures several case studies were conducted. Four case studies were made to evaluate each issue separately and an additional one to demonstrate how to combine the methods when conducting an LCA and LCCA, concerning how to optimise insulation thickness in a building. <br/><br/>The emphasis of this study has been more on accuracy of the results rather than simplification in order to mitigate erroneous conclusions regarding environmentally friendly, cost-effective alternatives for the building design. However, a simplification of life cycle studies does come from providing a structured and more consistent process of managing technical system boundaries and uncertainties in design optimisation. Adopting the approach described in this study will likely provide design conclusions with higher quality as well as save time and effort when conducting the study.<br/>}},
  author       = {{Ylmén, Peter}},
  isbn         = {{978-91-88722-71-3}},
  keywords     = {{Building design; life cycle; LCA; LCC; uncertainties; method}},
  language     = {{eng}},
  month        = {{11}},
  publisher    = {{Building Physics, LTH, Lund University}},
  school       = {{Lund University}},
  title        = {{Managing Uncertainty in Environmental and Cost Life Cycle Studies of Building Design}},
  url          = {{https://lup.lub.lu.se/search/files/84683441/Peter_Ylm_n_web.pdf}},
  year         = {{2020}},
}