Advanced

Specific amino acid substitutions in β strand S2 of FtsZ cause spiraling septation and impair assembly cooperativity in Streptomyces spp.

Sen, Beer Chakra LU ; Wasserstrom, Sebastian LU ; Findlay, Kim ; Söderholm, Niklas ; Sandblad, Linda ; von Wachenfeldt, Claes LU and Flärdh, Klas LU (2019) In Molecular Microbiology 112(1). p.184-198
Abstract

Bacterial cell division is orchestrated by the Z ring, which is formed by single-stranded treadmilling protofilaments of FtsZ. In Streptomyces, during sporulation, multiple Z rings are assembled and lead to formation of septa that divide a filamentous hyphal cell into tens of prespore compartments. We describe here mutant alleles of ftsZ in Streptomyces coelicolor and Streptomyces venezuelae that perturb cell division in such a way that constriction is initiated along irregular spiral-shaped paths rather than as regular septa perpendicular to the cell length axis. This conspicuous phenotype is caused by amino acid substitutions F37I and F37R in β strand S2 of FtsZ. The F37I mutation leads, instead of regular Z rings, to formation of... (More)

Bacterial cell division is orchestrated by the Z ring, which is formed by single-stranded treadmilling protofilaments of FtsZ. In Streptomyces, during sporulation, multiple Z rings are assembled and lead to formation of septa that divide a filamentous hyphal cell into tens of prespore compartments. We describe here mutant alleles of ftsZ in Streptomyces coelicolor and Streptomyces venezuelae that perturb cell division in such a way that constriction is initiated along irregular spiral-shaped paths rather than as regular septa perpendicular to the cell length axis. This conspicuous phenotype is caused by amino acid substitutions F37I and F37R in β strand S2 of FtsZ. The F37I mutation leads, instead of regular Z rings, to formation of relatively stable spiral-shaped FtsZ structures that are capable of initiating cell constriction. Further, we show that the F37 mutations affect the polymerization properties and impair the cooperativity of FtsZ assembly in vitro. The results suggest that specific residues in β strand S2 of FtsZ affect the conformational switch in FtsZ that underlies assembly cooperativity and enable treadmilling of protofilaments, and that these features are required for formation of regular Z rings. However, the data also indicate FtsZ-directed cell constriction is not dependent on assembly cooperativity.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Molecular Microbiology
volume
112
issue
1
pages
184 - 198
publisher
Wiley-Blackwell
external identifiers
  • scopus:85066043373
  • pmid:31002418
ISSN
0950-382X
DOI
10.1111/mmi.14262
language
English
LU publication?
yes
id
d2dab4b0-579a-4266-ba8e-c3315f124fb3
date added to LUP
2019-06-13 14:49:30
date last changed
2020-01-14 11:06:32
@article{d2dab4b0-579a-4266-ba8e-c3315f124fb3,
  abstract     = {<p>Bacterial cell division is orchestrated by the Z ring, which is formed by single-stranded treadmilling protofilaments of FtsZ. In Streptomyces, during sporulation, multiple Z rings are assembled and lead to formation of septa that divide a filamentous hyphal cell into tens of prespore compartments. We describe here mutant alleles of ftsZ in Streptomyces coelicolor and Streptomyces venezuelae that perturb cell division in such a way that constriction is initiated along irregular spiral-shaped paths rather than as regular septa perpendicular to the cell length axis. This conspicuous phenotype is caused by amino acid substitutions F37I and F37R in β strand S2 of FtsZ. The F37I mutation leads, instead of regular Z rings, to formation of relatively stable spiral-shaped FtsZ structures that are capable of initiating cell constriction. Further, we show that the F37 mutations affect the polymerization properties and impair the cooperativity of FtsZ assembly in vitro. The results suggest that specific residues in β strand S2 of FtsZ affect the conformational switch in FtsZ that underlies assembly cooperativity and enable treadmilling of protofilaments, and that these features are required for formation of regular Z rings. However, the data also indicate FtsZ-directed cell constriction is not dependent on assembly cooperativity.</p>},
  author       = {Sen, Beer Chakra and Wasserstrom, Sebastian and Findlay, Kim and Söderholm, Niklas and Sandblad, Linda and von Wachenfeldt, Claes and Flärdh, Klas},
  issn         = {0950-382X},
  language     = {eng},
  month        = {04},
  number       = {1},
  pages        = {184--198},
  publisher    = {Wiley-Blackwell},
  series       = {Molecular Microbiology},
  title        = {Specific amino acid substitutions in β strand S2 of FtsZ cause spiraling septation and impair assembly cooperativity in Streptomyces spp.},
  url          = {http://dx.doi.org/10.1111/mmi.14262},
  doi          = {10.1111/mmi.14262},
  volume       = {112},
  year         = {2019},
}