Advanced

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

Fatehi, Hesameddin LU ; Persson, Håkan LU ; Lucchini, Tommaso ; Ljungqvist, Mattias and Andersson, Oivind LU (2019) SAE 14th International Conference on Engines and Vehicles, ICE 2019 In SAE Technical Papers
Abstract

In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of... (More)

In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Representative Interactive Flamelets (RIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. The CFD simulations are validated using experimental measurement of light-duty diesel engine at two different loads. A good agreement is achieved between the model results and the pressure, heat release rates and emissions from the experiment. These cases are considered as the base-line for the parameter study cases.

(Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
14th International Conference on Engines & Vehicles: Technical paper
series title
SAE Technical Papers
article number
2019-24-0009
publisher
Society of Automotive Engineers
conference name
SAE 14th International Conference on Engines and Vehicles, ICE 2019
conference location
Capri, Italy
conference dates
2019-09-15 - 2019-09-19
external identifiers
  • scopus:85074388939
ISSN
0148-7191
DOI
10.4271/2019-24-0009
language
English
LU publication?
yes
id
e41a1527-56cc-4b26-9472-7222ebe21000
date added to LUP
2019-11-21 11:58:52
date last changed
2020-01-13 02:32:17
@inproceedings{e41a1527-56cc-4b26-9472-7222ebe21000,
  abstract     = {<p>In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Representative Interactive Flamelets (RIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. The CFD simulations are validated using experimental measurement of light-duty diesel engine at two different loads. A good agreement is achieved between the model results and the pressure, heat release rates and emissions from the experiment. These cases are considered as the base-line for the parameter study cases.</p>},
  author       = {Fatehi, Hesameddin and Persson, Håkan and Lucchini, Tommaso and Ljungqvist, Mattias and Andersson, Oivind},
  booktitle    = { 14th International Conference on Engines & Vehicles: Technical paper},
  issn         = {0148-7191},
  language     = {eng},
  month        = {09},
  publisher    = {Society of Automotive Engineers},
  series       = {SAE Technical Papers},
  title        = {Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine},
  url          = {http://dx.doi.org/10.4271/2019-24-0009},
  doi          = {10.4271/2019-24-0009},
  year         = {2019},
}