Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Investigating the role of strangeness in baryon–antibaryon annihilation at the LHC

Acharya, S. ; Adolfsson, J. LU ; Basu, S. LU orcid ; Christiansen, P. LU ; Matonoha, O. LU ; Nassirpour, A.F. LU orcid ; Ohlson, A. LU ; Oskarsson, A. LU ; Richert, T. LU and Rueda, O.V. LU , et al. (2022) In Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 829.
Abstract
Annihilation dynamics plays a fundamental role in the baryon–antibaryon interaction (B–B‾) at low-energy and its strength and range are crucial in the assessment of possible baryonic bound states. Experimental data on annihilation cross sections are available for the p–p‾ system but not in the low relative momentum region. Data regarding the B–B‾ interaction with strange degrees of freedom are extremely scarce, hence the modeling of the annihilation contributions is mainly based on nucleon–antinucleon (N–N‾) results, when available. In this letter we present a measurement of the p–p‾, p–Λ‾⊕p‾–Λ and Λ–Λ‾ interaction using correlation functions in the relative momentum space in high-multiplicity triggered pp collisions at s=13 TeV recorded... (More)
Annihilation dynamics plays a fundamental role in the baryon–antibaryon interaction (B–B‾) at low-energy and its strength and range are crucial in the assessment of possible baryonic bound states. Experimental data on annihilation cross sections are available for the p–p‾ system but not in the low relative momentum region. Data regarding the B–B‾ interaction with strange degrees of freedom are extremely scarce, hence the modeling of the annihilation contributions is mainly based on nucleon–antinucleon (N–N‾) results, when available. In this letter we present a measurement of the p–p‾, p–Λ‾⊕p‾–Λ and Λ–Λ‾ interaction using correlation functions in the relative momentum space in high-multiplicity triggered pp collisions at s=13 TeV recorded by ALICE at the LHC. In the p–p‾ system the couplings to the mesonic channels in different partial waves are extracted by adopting a coupled-channel approach with recent χEFT potentials. The inclusion of these inelastic channels provides good agreement with the data, showing a significant presence of the annihilation term down to zero momentum. Predictions obtained using the Lednický–Lyuboshits formula and scattering parameters obtained from heavy-ion collisions, hence mainly sensitive to elastic processes, are compared with the experimental p–Λ‾⊕p‾–Λ and Λ–Λ‾ correlations. The model describes the Λ–Λ‾ data and underestimates the p–Λ‾⊕p‾–Λ data in the region of momenta below 200 MeV/c. The observed deviation indicates a different contribution of annihilation channels to the two systems containing strange hadrons. © 2022 European Organization for Nuclear Research (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
volume
829
article number
137060
publisher
Elsevier
external identifiers
  • scopus:85129433834
ISSN
0370-2693
DOI
10.1016/j.physletb.2022.137060
language
English
LU publication?
yes
id
ecad504d-794b-4531-9c2d-d64c3091df86
date added to LUP
2022-09-12 15:15:40
date last changed
2023-05-11 09:23:49
@article{ecad504d-794b-4531-9c2d-d64c3091df86,
  abstract     = {{Annihilation dynamics plays a fundamental role in the baryon–antibaryon interaction (B–B‾) at low-energy and its strength and range are crucial in the assessment of possible baryonic bound states. Experimental data on annihilation cross sections are available for the p–p‾ system but not in the low relative momentum region. Data regarding the B–B‾ interaction with strange degrees of freedom are extremely scarce, hence the modeling of the annihilation contributions is mainly based on nucleon–antinucleon (N–N‾) results, when available. In this letter we present a measurement of the p–p‾, p–Λ‾⊕p‾–Λ and Λ–Λ‾ interaction using correlation functions in the relative momentum space in high-multiplicity triggered pp collisions at s=13 TeV recorded by ALICE at the LHC. In the p–p‾ system the couplings to the mesonic channels in different partial waves are extracted by adopting a coupled-channel approach with recent χEFT potentials. The inclusion of these inelastic channels provides good agreement with the data, showing a significant presence of the annihilation term down to zero momentum. Predictions obtained using the Lednický–Lyuboshits formula and scattering parameters obtained from heavy-ion collisions, hence mainly sensitive to elastic processes, are compared with the experimental p–Λ‾⊕p‾–Λ and Λ–Λ‾ correlations. The model describes the Λ–Λ‾ data and underestimates the p–Λ‾⊕p‾–Λ data in the region of momenta below 200 MeV/c. The observed deviation indicates a different contribution of annihilation channels to the two systems containing strange hadrons. © 2022 European Organization for Nuclear Research}},
  author       = {{Acharya, S. and Adolfsson, J. and Basu, S. and Christiansen, P. and Matonoha, O. and Nassirpour, A.F. and Ohlson, A. and Oskarsson, A. and Richert, T. and Rueda, O.V. and Silvermyr, D. and Zurlo, N.}},
  issn         = {{0370-2693}},
  language     = {{eng}},
  publisher    = {{Elsevier}},
  series       = {{Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics}},
  title        = {{Investigating the role of strangeness in baryon–antibaryon annihilation at the LHC}},
  url          = {{http://dx.doi.org/10.1016/j.physletb.2022.137060}},
  doi          = {{10.1016/j.physletb.2022.137060}},
  volume       = {{829}},
  year         = {{2022}},
}