Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Towards Superlattices via Evaporative Self-Assembly of Aerosol Nanoparticles

Eom, Namsoon LU and Deppert, Knut LU orcid (2019) European Aerosol Conference 2019
Abstract
Nanoparticle superlattices consisting of densely packed particles with periodic arrangements can exhibit interesting collective properties different from those of individual nanoparticles and thus have attracted great interest in research due to their potential applications in optoelectronic, plasmonic, and magnetic devices[1, 2]. Evaporation-induced self-assembly on solid substrates which employs nanoparticles produced by wet chemistry is one of the most widely used methods in nanoparticle superlattice fabrication[3]. However, impurities are inherent in the popular wet chemistry-based method and are often a cause of lack of reproducibility. Here we present a simple but novel method to generate close-packed arrays of nanoparticles uniquely... (More)
Nanoparticle superlattices consisting of densely packed particles with periodic arrangements can exhibit interesting collective properties different from those of individual nanoparticles and thus have attracted great interest in research due to their potential applications in optoelectronic, plasmonic, and magnetic devices[1, 2]. Evaporation-induced self-assembly on solid substrates which employs nanoparticles produced by wet chemistry is one of the most widely used methods in nanoparticle superlattice fabrication[3]. However, impurities are inherent in the popular wet chemistry-based method and are often a cause of lack of reproducibility. Here we present a simple but novel method to generate close-packed arrays of nanoparticles uniquely created by combining aerosol technology with evaporation-induced self-assembly. Gold aerosol nanoparticles are generated using a spark discharge generator and are subsequently deposited on liquid droplets. We demonstrate that this way of capturing aerosol nanoparticles in the gas-liquid interface of a droplet suppresses the ubiquitous ‘coffee-ring’ effect during evaporation leading to self-assemblies of nanoparticles. This simple, effective method provides a versatile strategy for fabricating various types of nanoparticle superlattices. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to conference
publication status
published
subject
conference name
European Aerosol Conference 2019
conference location
Gothenburg, Sweden
conference dates
2019-08-25 - 2019-08-30
language
English
LU publication?
yes
id
f843766c-3303-4ce7-b7a0-271a767e1fee
date added to LUP
2019-09-04 15:00:30
date last changed
2022-04-05 14:59:33
@misc{f843766c-3303-4ce7-b7a0-271a767e1fee,
  abstract     = {{Nanoparticle superlattices consisting of densely packed particles with periodic arrangements can exhibit interesting collective properties different from those of individual nanoparticles and thus have attracted great interest in research due to their potential applications in optoelectronic, plasmonic, and magnetic devices[1, 2]. Evaporation-induced self-assembly on solid substrates which employs nanoparticles produced by wet chemistry is one of the most widely used methods in nanoparticle superlattice fabrication[3]. However, impurities are inherent in the popular wet chemistry-based method and are often a cause of lack of reproducibility. Here we present a simple but novel method to generate close-packed arrays of nanoparticles uniquely created by combining aerosol technology with evaporation-induced self-assembly. Gold aerosol nanoparticles are generated using a spark discharge generator and are subsequently deposited on liquid droplets. We demonstrate that this way of capturing aerosol nanoparticles in the gas-liquid interface of a droplet suppresses the ubiquitous ‘coffee-ring’ effect during evaporation leading to self-assemblies of nanoparticles. This simple, effective method provides a versatile strategy for fabricating various types of nanoparticle superlattices.}},
  author       = {{Eom, Namsoon and Deppert, Knut}},
  language     = {{eng}},
  month        = {{08}},
  title        = {{Towards Superlattices via Evaporative Self-Assembly of Aerosol Nanoparticles}},
  year         = {{2019}},
}