Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

3D X-Ray Diffraction Characterization of Grain Growth and Recrystallization in Rolled Braze Clad Aluminum Sheet

Stenqvist, Torkel ; Hektor, Johan LU ; Bylund, Sara ; Moberg, Robert ; Edwards, Mårten O.M. ; Hall, Stephen A. LU and Näslund, Lars Åke (2021) In Advanced Engineering Materials 23(11).
Abstract

Braze clad on aluminum (Al) sheets has enabled fast and convenient brazing assembly of complex heat exchangers. However, there are details in the brazing process that are not fully understood. Herein, 3D X-ray diffraction (3DXRD) is used to investigate the grain position, size, and orientation before and after controlled atmosphere brazing (CAB). The outcomes are presented as maps of center-of-mass positions with relative grain size distribution and color-coded grain orientations. The results show that, for braze clad Al sheets exposed to CAB simulation, it is possible to distinguish grains from the solidified Al-Si alloy from those in the core Al alloy. It is also possible to distinguish new grains obtained through recrystallization... (More)

Braze clad on aluminum (Al) sheets has enabled fast and convenient brazing assembly of complex heat exchangers. However, there are details in the brazing process that are not fully understood. Herein, 3D X-ray diffraction (3DXRD) is used to investigate the grain position, size, and orientation before and after controlled atmosphere brazing (CAB). The outcomes are presented as maps of center-of-mass positions with relative grain size distribution and color-coded grain orientations. The results show that, for braze clad Al sheets exposed to CAB simulation, it is possible to distinguish grains from the solidified Al-Si alloy from those in the core Al alloy. It is also possible to distinguish new grains obtained through recrystallization during CAB. Hence, the study shows that stretching of the rolled Al sheet by 6% provides enough stored energy in the core material so that recrystallization occurs during CAB and, in addition, provides conditions for Al-Si alloy grain growth into the core material. While the phenomenon is well known, it is poorly understood for processes in connection with brazing of mechanically formed Al alloy components in heat exchanger assemblies, and these results demonstrate the potential for gaining deeper insights through 3DXRD.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
3D X-ray diffraction, aluminum, controlled atmospheric brazing, grain orientations, inverse pole figures
in
Advanced Engineering Materials
volume
23
issue
11
article number
2100126
publisher
Wiley-Blackwell
external identifiers
  • scopus:85108363236
ISSN
1438-1656
DOI
10.1002/adem.202100126
language
English
LU publication?
yes
id
fdaffa8f-542f-4587-b9a3-66c599b33139
date added to LUP
2021-07-16 13:07:55
date last changed
2023-11-23 05:11:06
@article{fdaffa8f-542f-4587-b9a3-66c599b33139,
  abstract     = {{<p>Braze clad on aluminum (Al) sheets has enabled fast and convenient brazing assembly of complex heat exchangers. However, there are details in the brazing process that are not fully understood. Herein, 3D X-ray diffraction (3DXRD) is used to investigate the grain position, size, and orientation before and after controlled atmosphere brazing (CAB). The outcomes are presented as maps of center-of-mass positions with relative grain size distribution and color-coded grain orientations. The results show that, for braze clad Al sheets exposed to CAB simulation, it is possible to distinguish grains from the solidified Al-Si alloy from those in the core Al alloy. It is also possible to distinguish new grains obtained through recrystallization during CAB. Hence, the study shows that stretching of the rolled Al sheet by 6% provides enough stored energy in the core material so that recrystallization occurs during CAB and, in addition, provides conditions for Al-Si alloy grain growth into the core material. While the phenomenon is well known, it is poorly understood for processes in connection with brazing of mechanically formed Al alloy components in heat exchanger assemblies, and these results demonstrate the potential for gaining deeper insights through 3DXRD.</p>}},
  author       = {{Stenqvist, Torkel and Hektor, Johan and Bylund, Sara and Moberg, Robert and Edwards, Mårten O.M. and Hall, Stephen A. and Näslund, Lars Åke}},
  issn         = {{1438-1656}},
  keywords     = {{3D X-ray diffraction; aluminum; controlled atmospheric brazing; grain orientations; inverse pole figures}},
  language     = {{eng}},
  number       = {{11}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Advanced Engineering Materials}},
  title        = {{3D X-Ray Diffraction Characterization of Grain Growth and Recrystallization in Rolled Braze Clad Aluminum Sheet}},
  url          = {{http://dx.doi.org/10.1002/adem.202100126}},
  doi          = {{10.1002/adem.202100126}},
  volume       = {{23}},
  year         = {{2021}},
}