Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Fluorine Abundances in the Galactic Disk

Guerço, Rafael ; Cunha, Katia ; Smith, Verne V. ; Hayes, Christian R. ; Abia, Carlos ; Lambert, David L. ; Jönsson, Henrik LU orcid and Ryde, Nils LU orcid (2019) In Astrophysical Journal 885(2).
Abstract

The chemical evolution of fluorine is investigated in a sample of Milky Way red giant stars that span a significant range in metallicity from [Fe/H] ∼-1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-resolution infrared spectra near 2.335 μm. The red giants are members of the thin and thick disk/halo, with two stars being likely members of the outer disk Monoceros overdensity. At lower metallicities, with [Fe/H] <-0.4 to-0.5, the abundance of F varies as a primary element with respect to the Fe abundance, with a constant subsolar value of [F/Fe] ∼-0.3 to-0.4 dex. At larger metallicities, however, [F/Fe] increases rapidly with [Fe/H] and displays a near-secondary behavior with respect to Fe.... (More)

The chemical evolution of fluorine is investigated in a sample of Milky Way red giant stars that span a significant range in metallicity from [Fe/H] ∼-1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-resolution infrared spectra near 2.335 μm. The red giants are members of the thin and thick disk/halo, with two stars being likely members of the outer disk Monoceros overdensity. At lower metallicities, with [Fe/H] <-0.4 to-0.5, the abundance of F varies as a primary element with respect to the Fe abundance, with a constant subsolar value of [F/Fe] ∼-0.3 to-0.4 dex. At larger metallicities, however, [F/Fe] increases rapidly with [Fe/H] and displays a near-secondary behavior with respect to Fe. Comparisons with various models of chemical evolution suggest that in the low-metallicity regime (dominated here by thick-disk stars), a primary evolution of 19F with Fe, with a subsolar [F/Fe] value that roughly matches the observed plateau, can be reproduced by a model incorporating neutrino nucleosynthesis in the aftermath of the core collapse in Type II supernovae. A primary behavior for [F/Fe] at low metallicity is also observed for a model including rapidly rotating low-metallicity massive stars, but this overproduces [F/Fe] at low metallicity. The thick-disk red giants in our sample span a large range of galactocentric distance (R g ∼ 6-13.7 kpc) yet display a roughly constant value of [F/Fe], indicating a very flat gradient (with a slope of 0.02 ± 0.03 dex kpc-1) of this elemental ratio over a significant portion of the Galaxy having

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Astrophysical Journal
volume
885
issue
2
article number
139
publisher
American Astronomical Society
external identifiers
  • scopus:85075325439
ISSN
0004-637X
DOI
10.3847/1538-4357/ab45f1
language
English
LU publication?
yes
id
fe10ccd6-c3ce-4770-9db8-7d94fe2588c1
date added to LUP
2019-12-05 09:37:21
date last changed
2024-04-17 00:45:29
@article{fe10ccd6-c3ce-4770-9db8-7d94fe2588c1,
  abstract     = {{<p>The chemical evolution of fluorine is investigated in a sample of Milky Way red giant stars that span a significant range in metallicity from [Fe/H] ∼-1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-resolution infrared spectra near 2.335 μm. The red giants are members of the thin and thick disk/halo, with two stars being likely members of the outer disk Monoceros overdensity. At lower metallicities, with [Fe/H] &lt;-0.4 to-0.5, the abundance of F varies as a primary element with respect to the Fe abundance, with a constant subsolar value of [F/Fe] ∼-0.3 to-0.4 dex. At larger metallicities, however, [F/Fe] increases rapidly with [Fe/H] and displays a near-secondary behavior with respect to Fe. Comparisons with various models of chemical evolution suggest that in the low-metallicity regime (dominated here by thick-disk stars), a primary evolution of <sup>19</sup>F with Fe, with a subsolar [F/Fe] value that roughly matches the observed plateau, can be reproduced by a model incorporating neutrino nucleosynthesis in the aftermath of the core collapse in Type II supernovae. A primary behavior for [F/Fe] at low metallicity is also observed for a model including rapidly rotating low-metallicity massive stars, but this overproduces [F/Fe] at low metallicity. The thick-disk red giants in our sample span a large range of galactocentric distance (R <sub>g</sub> ∼ 6-13.7 kpc) yet display a roughly constant value of [F/Fe], indicating a very flat gradient (with a slope of 0.02 ± 0.03 dex kpc<sup>-1</sup>) of this elemental ratio over a significant portion of the Galaxy having</p>}},
  author       = {{Guerço, Rafael and Cunha, Katia and Smith, Verne V. and Hayes, Christian R. and Abia, Carlos and Lambert, David L. and Jönsson, Henrik and Ryde, Nils}},
  issn         = {{0004-637X}},
  language     = {{eng}},
  number       = {{2}},
  publisher    = {{American Astronomical Society}},
  series       = {{Astrophysical Journal}},
  title        = {{Fluorine Abundances in the Galactic Disk}},
  url          = {{http://dx.doi.org/10.3847/1538-4357/ab45f1}},
  doi          = {{10.3847/1538-4357/ab45f1}},
  volume       = {{885}},
  year         = {{2019}},
}