Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Exploring functional subsets of cancer-associated fibroblasts

Bartoschek, Michael LU (2018) In Lund University, Faculty of Medicine Doctoral Dissertation Series 2018(113).
Abstract
The tumor microenvironment consists of several interacting cell types. Cancer research focssed mainly on the malignant cell in the past. The importance of the tumor microenvironment is increasingly appreciated, as endothelial cells and immune cells were identified as targets for anti-tumor therapy. Targeted therapy against cancer-associated fibroblasts (CAFs) are not in clinical use for the treatment of carcinomas, even though CAFs are involved in many tumor-supporting processes. CAFs are mesenchymal stromal cells and generate and modulate the extracellular matrix (ECM), which provides physical stability to the growing tumor. CAFs can alter cell-to-cell communication within the tumor microenvironment and thereby influence the immune... (More)
The tumor microenvironment consists of several interacting cell types. Cancer research focssed mainly on the malignant cell in the past. The importance of the tumor microenvironment is increasingly appreciated, as endothelial cells and immune cells were identified as targets for anti-tumor therapy. Targeted therapy against cancer-associated fibroblasts (CAFs) are not in clinical use for the treatment of carcinomas, even though CAFs are involved in many tumor-supporting processes. CAFs are mesenchymal stromal cells and generate and modulate the extracellular matrix (ECM), which provides physical stability to the growing tumor. CAFs can alter cell-to-cell communication within the tumor microenvironment and thereby influence the immune reaction to cancer cells, the response to cancer therapy and the tumor metabolism.
Breast cancer is the most common malignant disease and second most common reason for cancer-related death in women. Despite advancements in the treatment of breast cancer, some aggressive forms remain hard to treat.
In the first paper we investigated the effect of complement oligomeric matrix protein (COMP) on breast cancer. Epithelial COMP expression is associated with reduced survival in breast cancer patients.We showed that COMP resolves endoplasmic reticulum stress and deregulates the cell metabolism, causing increased growth and metastasis in vivo. We propose COMP expression as a potential prognostic marker in breast cancer.
In the second part of the thesis we analyzed the importance of platelet-derived growth factor (PDGF) signaling in solid tumors in general, and the effect of PDGF-CC signaling in breast cancer in particular. We showed that PDGF-CC signaling to CAFs and the subsequent release of CAF-derived stanniocalcin 1, hepatocyte growth factor, and insulin growth factor binding protein 3 maintain a basal-like phenotype in breast cancer. Genetic and pharmacologic disruption of this commuication loop resulted in conversion of a hormone receptor-negative into a hormone receptor-positive state, causing enhanced sensitivity to endocrine therapy in previously resistant tumors. We conclude that the breast cancer subtype is in part under the control of the tumor microenvironment.
CAFs have many different functions in the tumor microenvironment and different origins for CAFs have been suggested. In the last paper we used single-cell RNA-sequencing of 786 mesenchymal cells derived from tumors of the MMTV-PyMT mouse model of breast cancer, to identify subclasses of CAFs in an unbiased approach. We detected and confirmed the existence of four subclasses that potentially derive from three different origins. Based on differential gene expression analysis we assigned functional properties to each CAF subgroup. Gene profiles of the main CAF subgroups held independent prognostic capability in large clinical cohorts. We showed that an in depth investigation of cellular constituents of the tumor microenvironment with increased resolution, can reveal a higher order of cellular organization in malignant disease.
(Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • professor Isacke, Clare, The Institute of Cancer Research, London, UK
organization
publishing date
type
Thesis
publication status
published
subject
in
Lund University, Faculty of Medicine Doctoral Dissertation Series
volume
2018
issue
113
pages
83 pages
publisher
Lund University: Faculty of Medicine
defense location
Föreläsningssalen, Medicon Village, Scheelevägen 2, Lund.
defense date
2018-09-21 09:30:00
ISSN
1652-8220
ISBN
978-91-7619-681-6
language
English
LU publication?
yes
id
bf80d59b-534e-4990-9b5b-769c8fbc2cd6
date added to LUP
2018-08-28 09:44:09
date last changed
2019-11-19 13:49:40
@phdthesis{bf80d59b-534e-4990-9b5b-769c8fbc2cd6,
  abstract     = {{The tumor microenvironment consists of several interacting cell types. Cancer research focssed mainly on the malignant cell in the past. The importance of the tumor microenvironment is increasingly appreciated, as endothelial cells and immune cells were identified as targets for anti-tumor therapy. Targeted therapy against cancer-associated fibroblasts (CAFs) are not in clinical use for the treatment of carcinomas, even though CAFs are involved in many tumor-supporting processes. CAFs are mesenchymal stromal cells and generate and modulate the extracellular matrix (ECM), which provides physical stability to the growing tumor. CAFs can alter cell-to-cell communication within the tumor microenvironment and thereby influence the immune reaction to cancer cells, the response to cancer therapy and the tumor metabolism.<br/>Breast cancer is the most common malignant disease and second most common reason for cancer-related death in women. Despite advancements in the treatment of breast cancer, some aggressive forms remain hard to treat.<br/>In the first paper we investigated the effect of complement oligomeric matrix protein (COMP) on breast cancer. Epithelial COMP expression is associated with reduced survival in breast cancer patients.We showed that COMP resolves endoplasmic reticulum stress and deregulates the cell metabolism, causing increased growth and metastasis in vivo. We propose COMP expression as a potential prognostic marker in breast cancer.<br/>In the second part of the thesis we analyzed the importance of platelet-derived growth factor (PDGF) signaling in solid tumors in general, and the effect of PDGF-CC signaling in breast cancer in particular. We showed that PDGF-CC signaling to CAFs and the subsequent release of CAF-derived stanniocalcin 1, hepatocyte growth factor, and insulin growth factor binding protein 3 maintain a basal-like phenotype in breast cancer. Genetic and pharmacologic disruption of this commuication loop resulted in conversion of a hormone receptor-negative into a hormone receptor-positive state, causing enhanced sensitivity to endocrine therapy in previously resistant tumors. We conclude that the breast cancer subtype is in part under the control of the tumor microenvironment.<br/>CAFs have many different functions in the tumor microenvironment and different origins for CAFs have been suggested. In the last paper we used single-cell RNA-sequencing of 786 mesenchymal cells derived from tumors of the MMTV-PyMT mouse model of breast cancer, to identify subclasses of CAFs in an unbiased approach. We detected and confirmed the existence of four subclasses that potentially derive from three different origins. Based on differential gene expression analysis we assigned functional properties to each CAF subgroup. Gene profiles of the main CAF subgroups held independent prognostic capability in large clinical cohorts. We showed that an in depth investigation of cellular constituents of the tumor microenvironment with increased resolution, can reveal a higher order of cellular organization in malignant disease.<br/>}},
  author       = {{Bartoschek, Michael}},
  isbn         = {{978-91-7619-681-6}},
  issn         = {{1652-8220}},
  language     = {{eng}},
  number       = {{113}},
  publisher    = {{Lund University: Faculty of Medicine}},
  school       = {{Lund University}},
  series       = {{Lund University, Faculty of Medicine Doctoral Dissertation Series}},
  title        = {{Exploring functional subsets of cancer-associated fibroblasts}},
  url          = {{https://lup.lub.lu.se/search/files/50184971/Michael_Bartoschek_WEBB.pdf}},
  volume       = {{2018}},
  year         = {{2018}},
}