Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

An Organic Chemistry Odyssey : Imaging Mass Spectrometry in Neurotherapeutics, Asymmetric Methodology Development and Natural Product Synthesis

Villacrez, Marvin LU (2024)
Abstract
The development of imaging technologies and brain models is crucial for advancements in neurotherapeutic drug discovery and development. They assume a critical role in evaluating essential parameters such as drug blood-brain barrier (BBB) permeation, distribution, and metabolism, all of which are vital for the development of safe and effective medications. In the first part of this thesis, we explore how the antipsychotic drug clozapine (CLO) and its two primary metabolites, N-desmethylclozapine (NDMC) and clozapine-N-oxide (CNO), permeate the blood-brain barrier and how they are distributed as well as metabolised within the brain. This investigation is conducted primarily in a desert locusts (Schistocerca gregaria) ex vivo brain model by... (More)
The development of imaging technologies and brain models is crucial for advancements in neurotherapeutic drug discovery and development. They assume a critical role in evaluating essential parameters such as drug blood-brain barrier (BBB) permeation, distribution, and metabolism, all of which are vital for the development of safe and effective medications. In the first part of this thesis, we explore how the antipsychotic drug clozapine (CLO) and its two primary metabolites, N-desmethylclozapine (NDMC) and clozapine-N-oxide (CNO), permeate the blood-brain barrier and how they are distributed as well as metabolised within the brain. This investigation is conducted primarily in a desert locusts (Schistocerca gregaria) ex vivo brain model by employing Imaging Mass Spectrometry (IMS), specifically Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS) as imaging tool. IMS leverages the capabilities of traditional Mass Spectrometry (MS) but in a two-dimensional format, enabling the creation of ion intensity maps that disclose the precise spatial distribution of molecules within analysed samples. Notably, IMS achieves mapping without the need for molecular imaging probes.
Our study was carried out by subjecting isolated desert locust brains to incubation in solutions containing the studied drugs for durations of 15 and 45 minutes. This unique ex vivo approach allowed us to investigate the isolated behaviour of the drugs within the brain, free from the influence of systemic contamination.
Obtained ion intensity maps revealed that CLO exhibits a notable capacity to traverse the BBB. After a 15-minute incubation period, the drug was primarily located at the brain tissue's periphery. However, following a 45-minute incubation, it was distributed throughout the entire brain. The maps also reveal that CLO is readily metabolised to NDMC within the brain, with its distribution mirroring that of CLO. Interestingly, these findings diverge significantly from the NDMC administration studies. In the maps derived from these experiments, it becomes apparent that NDMC exhibits a constrained ability to penetrate the BBB, as its distribution remains predominantly limited to the tissue edges even after 45 minutes of incubation. Regarding CNO incubation experiments, the resulting maps clearly illustrate its highly restricted ability to penetrate the BBB, demonstrating an even lower BBB permeability than that observed for NDMC. Furthermore, the maps show the presence of both CLO and NDMC, indicating that CNO is susceptible to brain metabolism. This discovery holds significant implications in the context of CNO's use in the Designer Receptors Activated only by Designer Drugs (DREADD) technique, where it is employed with the assumption of its pharmacological inactivity. The presence of CLO and NDMC, both of which exhibit pharmacological activity on dopamine, serotonin, and muscarine receptors, could potentially have influenced the interpretation of results in previously conducted DREADD studies. This suggests the necessity for a reevaluation of the outcomes of these experiments.
The ion intensity maps generated in this study are groundbreaking and showcase the potential of our IMS desert locust brain model platform for application in both pharmaceutical research and neuroscience.
The second part of this thesis targets the development of small-molecule compounds. It presents an efficient enantioselective approach for the synthesis of vicinal amino alcohols and our attempts towards the total synthesis of Aspidophylline A. By using asymmetric transfer hydrogenation (ATH) on β-amido-α-keto esters undergoing dynamic kinetic resolution (DKR); we managed to synthesise various anti-β-amido-α-hydroxy esters in high yields and excellent diastereo- and enantioselectivities. The protocol developed for the hydrogenations uses HCO2H:NEt3 (2:5) as a hydrogen source and RuCl[(R,R)-FsDPEN](p-cymene) as a catalyst, both commercially available.
Our work on Aspidophylline A has brought us to the synthesis of an advanced tricyclic intermediate. (Less)
Abstract (Swedish)
Första delen i denna avhandling fokuserar på 'Imaging Mass Spectrometry' (IMS), en analytisk teknik med kartografiska egenskaper. Denna teknik används dock inte för att kartlägga geografiska terränger, utan för att skapa kartor över det kemiska landskapet i biologiska prover, från vävnadssnitt av organ eller tumörer till enskilda celler. Dessa kartor visar med hög precision var olika molekyler, såsom kroppsegna ämnen och läkemedel, finns inom de analyserade proverna, och bidrar på så sätt till en djupare förståelse av såväl biologiska som farmakologiska processer på molekylär nivå.

I denna studie använde vi IMS och en insekthjärna för att studera det antipsykotiska läkemedlet klozapin (CLO) och dess två viktigaste metaboliter,... (More)
Första delen i denna avhandling fokuserar på 'Imaging Mass Spectrometry' (IMS), en analytisk teknik med kartografiska egenskaper. Denna teknik används dock inte för att kartlägga geografiska terränger, utan för att skapa kartor över det kemiska landskapet i biologiska prover, från vävnadssnitt av organ eller tumörer till enskilda celler. Dessa kartor visar med hög precision var olika molekyler, såsom kroppsegna ämnen och läkemedel, finns inom de analyserade proverna, och bidrar på så sätt till en djupare förståelse av såväl biologiska som farmakologiska processer på molekylär nivå.

I denna studie använde vi IMS och en insekthjärna för att studera det antipsykotiska läkemedlet klozapin (CLO) och dess två viktigaste metaboliter, N-desmetylklozapin (NDMC) och klozapin-N-oxid (CNO). Vårt mål var att förstå benägenheten för dessa ämnen att ta sig igenom blod-hjärnbarriären (BBB) samt deras beteende i hjärnan. Vi valde dessa föreningar av följande skäl. Trots att CLO är det vanligaste antipsykotiska läkemedlet utskrivet, är dess verkningsmekanism inte helt kartlagt. NDMC är intressant eftersom den misstänks vara en aktiv substans, delaktig i CLOs effekter. NDMC har utvärderats i kliniska tester men påvisade ingen farmakologisk effekt, något som tros bero på en begränsad förmåga att penetrera BBB. Vad gäller CNO, har den använts flitigt inom neurovetenskap som ett slags fjärrkontroll för att aktivera manipulerade hjärnceller. Dess användning bygger dock på antagandet att den enkelt kan ta sig in i hjärnan och inte genomgår förändringar. Våra IMS-kartor över insektshjärnan visar att CLO effektivt kan passera BBB och fördelar sig jämnt över hela hjärnan. Väl där omvandlas den till NDMC, vars distribution i stort sett matchar CLOs. Däremot, när NDMC administreras direkt, uppvisar den både en inskränkt förmåga att passera BBB och fördela sig hjärnan. Gällande CNO, indikerar våra kartor att den stöter på svårigheter att passera BBB och att den dessutom omvandlas till både CLO och NDMC inne i hjärnan. Våra resultat ifrågasätter användandet av CNO inom neurovetenskap och tyder på att NDMCs begränsade förmåga att penetrera BBB förmodligen är orsaken till dess bristande effekt som läkemedel. För övrigt framhäver denna studie också användbarheten av vår IMS/insekthjärnplattform för farmakologisk och neurovetenskaplig forskning.

I den andra delen i denna avhandling har en metod för att producera vicinala aminohydroxider, ett vanligt förekommande arrangemang i såväl läkemedel som naturliga föreningar, framgångsrikt utvecklats. Detta lyckades vi med genom att tillämpa asymmetrisk överförings hydrogenering på anti-α-amido-β-hydroxil estrar som under våra utvecklade betingelser genomgick dynamisk kinetisk resolution. I denna andra del presenteras också våra framsteg i tillverkningen av Aspidophylline A, en förening som återfinns i en oleanderväxtart och som har potentialen att göra resistenta cancerceller mottagliga för behandling. Även om vi inte lyckades fullborda vår syntes har våra ansträngningar satt oss på en lovande väg mot att uppnå detta mål. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Odell, Luke, Uppsala universitet
organization
alternative title
En Organkemisk Odyssé : Avbildande Masspektrometri, Asymmetrisk Metodutveckling och Naturprodukt Syntes
publishing date
type
Thesis
publication status
published
subject
keywords
Masspektrometri, totalsyntes, avbildande massspektrometri, MALDI avbildande massspektrometri, asymmetrisk syntes, farmakokinetik, dynamisk kinetisk resolution, Aasymetrisk överföringshydrogenering, klozapin, Läkemedelsmetabolism, läkemedelsdistribution, aminoalkoholer, Aspidophylline A, mass spectromery, Imaging mass spectrometry, Total synthesis, Dynamic kinetic resolution, asymmetric transfer hydrogenation, Aspidophylline A, Drug distribution, Drug metabolism, Drug Metabolism and Mass Spectrometry Imaging, MALDI mass spectrometry imaging, clozapine, amino alcohols, pharmacokinetics
pages
86 pages
publisher
Lund University
defense location
Kemicentrum sal K:C
defense date
2024-05-17 14:00:00
ISBN
978-91-8096-035-9
978-91-8096-034-2
language
English
LU publication?
yes
id
c5bca4ae-cc0f-4367-9007-eb1e5e4c5424
date added to LUP
2024-04-02 13:10:28
date last changed
2024-05-25 03:06:54
@phdthesis{c5bca4ae-cc0f-4367-9007-eb1e5e4c5424,
  abstract     = {{The development of imaging technologies and brain models is crucial for advancements in neurotherapeutic drug discovery and development. They assume a critical role in evaluating essential parameters such as drug blood-brain barrier (BBB) permeation, distribution, and metabolism, all of which are vital for the development of safe and effective medications. In the first part of this thesis, we explore how the antipsychotic drug clozapine (CLO) and its two primary metabolites, N-desmethylclozapine (NDMC) and clozapine-N-oxide (CNO), permeate the blood-brain barrier and how they are distributed as well as metabolised within the brain. This investigation is conducted primarily in a desert locusts (Schistocerca gregaria) ex vivo brain model by employing Imaging Mass Spectrometry (IMS), specifically Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS) as imaging tool. IMS leverages the capabilities of traditional Mass Spectrometry (MS) but in a two-dimensional format, enabling the creation of ion intensity maps that disclose the precise spatial distribution of molecules within analysed samples. Notably, IMS achieves mapping without the need for molecular imaging probes.<br/>Our study was carried out by subjecting isolated desert locust brains to incubation in solutions containing the studied drugs for durations of 15 and 45 minutes. This unique ex vivo approach allowed us to investigate the isolated behaviour of the drugs within the brain, free from the influence of systemic contamination.<br/>Obtained ion intensity maps revealed that CLO exhibits a notable capacity to traverse the BBB. After a 15-minute incubation period, the drug was primarily located at the brain tissue's periphery. However, following a 45-minute incubation, it was distributed throughout the entire brain. The maps also reveal that CLO is readily metabolised to NDMC within the brain, with its distribution mirroring that of CLO. Interestingly, these findings diverge significantly from the NDMC administration studies. In the maps derived from these experiments, it becomes apparent that NDMC exhibits a constrained ability to penetrate the BBB, as its distribution remains predominantly limited to the tissue edges even after 45 minutes of incubation. Regarding CNO incubation experiments, the resulting maps clearly illustrate its highly restricted ability to penetrate the BBB, demonstrating an even lower BBB permeability than that observed for NDMC. Furthermore, the maps show the presence of both CLO and NDMC, indicating that CNO is susceptible to brain metabolism. This discovery holds significant implications in the context of CNO's use in the Designer Receptors Activated only by Designer Drugs (DREADD) technique, where it is employed with the assumption of its pharmacological inactivity. The presence of CLO and NDMC, both of which exhibit pharmacological activity on dopamine, serotonin, and muscarine receptors, could potentially have influenced the interpretation of results in previously conducted DREADD studies. This suggests the necessity for a reevaluation of the outcomes of these experiments.<br/>The ion intensity maps generated in this study are groundbreaking and showcase the potential of our IMS desert locust brain model platform for application in both pharmaceutical research and neuroscience.<br/>The second part of this thesis targets the development of small-molecule compounds. It presents an efficient enantioselective approach for the synthesis of vicinal amino alcohols and our attempts towards the total synthesis of Aspidophylline A. By using asymmetric transfer hydrogenation (ATH) on β-amido-α-keto esters undergoing dynamic kinetic resolution (DKR); we managed to synthesise various anti-β-amido-α-hydroxy esters in high yields and excellent diastereo- and enantioselectivities. The protocol developed for the hydrogenations uses HCO2H:NEt3 (2:5) as a hydrogen source and RuCl[(R,R)-FsDPEN](p-cymene) as a catalyst, both commercially available.<br/>Our work on Aspidophylline A has brought us to the synthesis of an advanced tricyclic intermediate.}},
  author       = {{Villacrez, Marvin}},
  isbn         = {{978-91-8096-035-9}},
  keywords     = {{Masspektrometri; totalsyntes; avbildande massspektrometri; MALDI avbildande massspektrometri; asymmetrisk syntes; farmakokinetik; dynamisk kinetisk resolution; Aasymetrisk överföringshydrogenering; klozapin; Läkemedelsmetabolism; läkemedelsdistribution; aminoalkoholer; Aspidophylline A; mass spectromery; Imaging mass spectrometry; Total synthesis; Dynamic kinetic resolution; asymmetric transfer hydrogenation; Aspidophylline A; Drug distribution; Drug metabolism; Drug Metabolism and Mass Spectrometry Imaging; MALDI mass spectrometry imaging; clozapine; amino alcohols; pharmacokinetics}},
  language     = {{eng}},
  publisher    = {{Lund University}},
  school       = {{Lund University}},
  title        = {{An Organic Chemistry Odyssey : Imaging Mass Spectrometry in Neurotherapeutics, Asymmetric Methodology Development and Natural Product Synthesis}},
  url          = {{https://lup.lub.lu.se/search/files/178504061/An_Organic_Chemistry_Odyssey.pdf}},
  year         = {{2024}},
}