Predicting the Energy Performance of Buildings : A Method using Probabilistic Risk Analysis for Data-driven Decision-support
(2021)- Abstract
- As most countries worldwide continue to mitigate climate change, one area of focus is a building's energy efficiency. Buildings currently account for approximately 40 per cent of the total energy use in the European Union. One solution for reducing the energy demand from buildings is by continually implementing more stringent building regulations. Consequently, the importance of accurate and efficient building performance simulations to predict the energy performance of a building design increases with more stringent regulation reducing the margin of error. However, a performance gap exists between the predicted energy performance and a building's actual energy performance.
This research uses the concept of risk, which consists of... (More) - As most countries worldwide continue to mitigate climate change, one area of focus is a building's energy efficiency. Buildings currently account for approximately 40 per cent of the total energy use in the European Union. One solution for reducing the energy demand from buildings is by continually implementing more stringent building regulations. Consequently, the importance of accurate and efficient building performance simulations to predict the energy performance of a building design increases with more stringent regulation reducing the margin of error. However, a performance gap exists between the predicted energy performance and a building's actual energy performance.
This research uses the concept of risk, which consists of probability and consequence, to bridge the knowledge gap and explain and predict the energy performance gap. This research aimed to develop and test a method for using a predictive model to quantify a building design's risk level and evaluate design options. The developed method uses probabilistic risk analysis for quantifying and predicting the energy performance of buildings, resulting in a data-driven decision-support when deciding the building design. The method was developed in steps, presented in several studies. The studies used the research strategy of case studies to test the method and compared the outcome against field measurements and was designed to develop, test, verify and validate the method.
One case study used the traditional deterministic approach for quantifying energy performance focused on identifying financially viable renovation packages to passive house level and comparing and optimising different energy performance levels for the building stock. The results showed the potential and limitations of the current method for building performance simulations in evaluating the design space and quantifying the energy performance and costs of different design options.
An explorative phase followed, identifying alternative methods and comparing these to the traditional deterministic approach based on the knowledge gained. Finally, qualitative methods were used to evaluate and discern when and for what purpose the alternative probabilistic methods might be advantageous to apply.
Based on the outcome of this work, the development of the probabilistic risk analysis method began, resulting in several studies focusing on different aspects of the method. The first study developed and tested an experimental version of the method in a case study, verifying the resulting predictive model against field measurements for the energy performance. The outcome showcased the potential with the developed method and identified several aspects needing further investigation and development. One aspect was regarding the accuracy of the predictive model, requiring further investigation into the data quality used as a basis for the model. The other was how to quantify the consequences of not attaining the design criteria and develop the method to compare design options and support the decision-making process using a data-driven approach. However, the data resolution from the field measurements was coarse, reducing the analytical potential by only comparing the aggregated total.
Thus, one purpose with the following case study was to increase the resolution to enable additional analytical comparisons and focused on the data quality. The study evaluated how different levels of data quality impact the predictive model's accuracy. The outcome showcased the importance of data quality and the impact on the predictive model.
The subsequent study evaluated how to develop the method to include optimising the building design. The implemented optimisation step compares design options and how the stakeholder viewpoints impact the analysis and models' scope when quantifying the risk. Also evaluated was how the selected design criteria impact a project's risk level. The evaluation illustrates how quantifying the risk level could improve the decision-making process, either when deciding on a building design or the design criterion to use.
With the outcomes of this project, the probabilistic methods for quantifying energy performance and consequences of decisions and how to apply them are more accessible to the building sector. The main findings from these studies were the benefits of implementing the probabilistic approach to quantify building designs' energy performance and how this could support the decision-makers during the design process while also clarifying the current limitations to overcome. However, this method adds several new dimensions for data gathering, performing the simulations and analysis, and visualising and conveying the results using different plots. Furthermore, instead of providing a single value based on deterministic approaches for predicting the energy performance of a building design, the probabilistic approach provides a distribution of possible outcomes based on empiric data of uncertainties from which to quantify the probability of failure. Finally, the results also showed the importance and impact of data quality and a structured process for gathering data. (Less) - Abstract (Swedish)
- Byggnaders energieffektivitet är ett fokusområde i arbetet med att minska klimatförändringarna, då byggnader står för cirka 40 procent av den totala energianvändningen i Europeiska unionen. En lösning som tillämpas för att minska byggnaders energibehov är att ständigt införa strängare byggregler. Följaktligen ökar betydelsen av precisa och effektiva simuleringar för att kunna beräkna byggnaders framtida energianvändning. Det finns emellertid ofta en skillnad mellan den beräknade energiprestandan och en byggnads faktiska energiprestanda.
För att överbrygga kunskapsklyftan och förklara och förutsäga skillnaden i prestanda har denna studie använt begreppet risk, vilket består av sannolikhet och konsekvens. Syftet var att utveckla och... (More) - Byggnaders energieffektivitet är ett fokusområde i arbetet med att minska klimatförändringarna, då byggnader står för cirka 40 procent av den totala energianvändningen i Europeiska unionen. En lösning som tillämpas för att minska byggnaders energibehov är att ständigt införa strängare byggregler. Följaktligen ökar betydelsen av precisa och effektiva simuleringar för att kunna beräkna byggnaders framtida energianvändning. Det finns emellertid ofta en skillnad mellan den beräknade energiprestandan och en byggnads faktiska energiprestanda.
För att överbrygga kunskapsklyftan och förklara och förutsäga skillnaden i prestanda har denna studie använt begreppet risk, vilket består av sannolikhet och konsekvens. Syftet var att utveckla och testa en metod för att använda en prediktiv modell för att kvantifiera en byggnads risknivå och utvärdera olika designalternativ. Den utvecklade metoden använder probabilistisk riskanalys för att kvantifiera och förutsäga byggnaders energiprestanda vilket resulterar i ett datadrivet beslutsstöd när man bestämmer byggnadens design. Metoden utvecklades i steg, vilket presenterades i flera studier. I studierna användes fallstudier för att testa den utvecklade metoden och jämföra resultatet mot fältmätningar, vilka utformades för att utveckla, testa, verifiera och validera metoden.
Den första fallstudien använde den traditionella deterministiska metoden för att kvantifiera energiprestandan för småhus från 1960- och 1970-talet med fokus på att identifiera ekonomiskt lönsamma renoveringspaket till passivhusnivå samt vilken påverkan det skulle ge på energiprestanda för byggnadsbeståndet. Resultaten visade på potentialen och begränsningarna vid användning av den nuvarande simuleringsmetoden för att utvärdera olika designalternativ och kvantifiera energiprestanda och kostnader.
Detta följdes av en explorativ fas där alternativa metoder identifierades och jämfördes med det traditionella deterministiska tillvägagångssättet. Utvärderingen utfördes med hjälp av kvalitativa metoder för att urskilja när och i vilket syfte de alternativa probabilistiska metoderna kan vara fördelaktiga att tillämpa.
Baserat på resultatet av detta arbete började utvecklingen av metoden för probabilistisk riskanalys, vilket resulterade i flera studier med fokus på olika aspekter av metoden. Den första studien utvecklade och testade en experimentell version av metoden i en fallstudie som verifierade den resulterande prediktiva modellen för energiprestanda mot fältmätningar. Resultatet visade potentialen med den utvecklade metoden och identifierade flera aspekter i behov av ytterligare utredning och utveckling. En aspekt handlade om den prediktiva modellens precision, vilket krävde ytterligare undersökning av datakvaliteten som användes som grund för modellen. En annan aspekt var hur man kvantifierar konsekvenserna av att inte uppnå designkriterierna och hur metoden kan utvecklas för att jämföra designalternativ och stödja beslutsprocessen med hjälp av en datadriven strategi. Dataupplösningen från fältmätningarna var dock grov, vilket minskade den analytiska potentialen genom att bara jämföra den aggregerade summan. Således var ett syfte med den följande fallstudien att öka dataupplösningen för att möjliggöra ytterligare analytiska jämförelser och med inriktning på datakvaliteten. Studien utvärderade hur olika nivåer av datakvalitet påverkar den förutsägbara modellens precision. Resultatet visade på vikten av datakvalitet och dess inverkan på den prediktiva modellen.
Den efterföljande studien utvärderade hur metoden kan utvecklas för att inkludera optimering av byggnadens design. Det implementerade optimeringssteget jämför designalternativ och hur intressentens synpunkter påverkar analysen och modellernas omfattning vid kvantifiering av risken. Studien utvärderade också hur de valda nivåerna på designkriterierna påverkar ett projekts risknivå. Utvärderingen illustrerar hur kvantifiering av risknivån kan förbättra beslutsprocessen, antingen när man beslutar om en byggnadsdesign eller vid valet av designkriteriet som ska användas i projektet. Målet är att denna studie ska tillgängliggöra användandet av deterministiska och probabilistiska metoder vid beslut gällande energiprestanda i byggsektorn.
De viktigaste resultaten från studierna var fördelarna med att implementera den probabilistiska metoden för att kvantifiera en byggnads framtida energianvändning och hur detta skulle kunna stödja beslutsfattarna under designprocessen. Metoden lägger till ytterligare dimensioner för datainsamling, utförande av simuleringar och analys, och visualisering och förmedling av resultaten. Istället för att tillhandahålla ett enda värde för en byggnads framtida energianvändning baserat på deterministiska metoder, så ger istället den probabilistiska metoden en fördelning av möjliga resultat baserat på empiriska data av osäkerheter för att kvantifiera sannolikheten för att uppnå kravställningen. Resultaten visade också betydelsen och effekten av datakvalitet och en strukturerad process för att samla in data. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/1121915b-1dc3-4251-ad7f-a80457e62787
- author
- Ekström, Tomas LU
- supervisor
- opponent
-
- Prof. De Wilde, Pieter, University of Plymouth, United Kingdom.
- organization
- publishing date
- 2021
- type
- Thesis
- publication status
- published
- subject
- keywords
- Energy efficiency, Probabilistic risk assessment, Risk analysis, Simulation and modeling, Field measurements
- pages
- 238 pages
- publisher
- Department of Building and Environmental Technology, Lund University
- defense location
- Lecture hall V:C, building V, John Ericssons väg 1, Faculty of Engineering LTH, Lund University, Lund. Zoom: https://lu-se.zoom.us/j/67852704665
- defense date
- 2021-09-17 13:00:00
- ISSN
- 0349-4950
- ISBN
- 978-91-88722-75-1
- 978-91-88722-74-4
- project
- Predicting the Energy Performance of Buildings - A Method using Probabilistic Risk Analysis for Data-driven Decision-support
- language
- English
- LU publication?
- yes
- id
- 1121915b-1dc3-4251-ad7f-a80457e62787
- date added to LUP
- 2021-08-18 14:50:12
- date last changed
- 2021-10-22 11:12:39
@phdthesis{1121915b-1dc3-4251-ad7f-a80457e62787, abstract = {{As most countries worldwide continue to mitigate climate change, one area of focus is a building's energy efficiency. Buildings currently account for approximately 40 per cent of the total energy use in the European Union. One solution for reducing the energy demand from buildings is by continually implementing more stringent building regulations. Consequently, the importance of accurate and efficient building performance simulations to predict the energy performance of a building design increases with more stringent regulation reducing the margin of error. However, a performance gap exists between the predicted energy performance and a building's actual energy performance.<br/>This research uses the concept of risk, which consists of probability and consequence, to bridge the knowledge gap and explain and predict the energy performance gap. This research aimed to develop and test a method for using a predictive model to quantify a building design's risk level and evaluate design options. The developed method uses probabilistic risk analysis for quantifying and predicting the energy performance of buildings, resulting in a data-driven decision-support when deciding the building design. The method was developed in steps, presented in several studies. The studies used the research strategy of case studies to test the method and compared the outcome against field measurements and was designed to develop, test, verify and validate the method.<br/>One case study used the traditional deterministic approach for quantifying energy performance focused on identifying financially viable renovation packages to passive house level and comparing and optimising different energy performance levels for the building stock. The results showed the potential and limitations of the current method for building performance simulations in evaluating the design space and quantifying the energy performance and costs of different design options.<br/>An explorative phase followed, identifying alternative methods and comparing these to the traditional deterministic approach based on the knowledge gained. Finally, qualitative methods were used to evaluate and discern when and for what purpose the alternative probabilistic methods might be advantageous to apply.<br/>Based on the outcome of this work, the development of the probabilistic risk analysis method began, resulting in several studies focusing on different aspects of the method. The first study developed and tested an experimental version of the method in a case study, verifying the resulting predictive model against field measurements for the energy performance. The outcome showcased the potential with the developed method and identified several aspects needing further investigation and development. One aspect was regarding the accuracy of the predictive model, requiring further investigation into the data quality used as a basis for the model. The other was how to quantify the consequences of not attaining the design criteria and develop the method to compare design options and support the decision-making process using a data-driven approach. However, the data resolution from the field measurements was coarse, reducing the analytical potential by only comparing the aggregated total.<br/>Thus, one purpose with the following case study was to increase the resolution to enable additional analytical comparisons and focused on the data quality. The study evaluated how different levels of data quality impact the predictive model's accuracy. The outcome showcased the importance of data quality and the impact on the predictive model.<br/>The subsequent study evaluated how to develop the method to include optimising the building design. The implemented optimisation step compares design options and how the stakeholder viewpoints impact the analysis and models' scope when quantifying the risk. Also evaluated was how the selected design criteria impact a project's risk level. The evaluation illustrates how quantifying the risk level could improve the decision-making process, either when deciding on a building design or the design criterion to use.<br/>With the outcomes of this project, the probabilistic methods for quantifying energy performance and consequences of decisions and how to apply them are more accessible to the building sector. The main findings from these studies were the benefits of implementing the probabilistic approach to quantify building designs' energy performance and how this could support the decision-makers during the design process while also clarifying the current limitations to overcome. However, this method adds several new dimensions for data gathering, performing the simulations and analysis, and visualising and conveying the results using different plots. Furthermore, instead of providing a single value based on deterministic approaches for predicting the energy performance of a building design, the probabilistic approach provides a distribution of possible outcomes based on empiric data of uncertainties from which to quantify the probability of failure. Finally, the results also showed the importance and impact of data quality and a structured process for gathering data.}}, author = {{Ekström, Tomas}}, isbn = {{978-91-88722-75-1}}, issn = {{0349-4950}}, keywords = {{Energy efficiency; Probabilistic risk assessment; Risk analysis; Simulation and modeling; Field measurements}}, language = {{eng}}, publisher = {{Department of Building and Environmental Technology, Lund University}}, school = {{Lund University}}, title = {{Predicting the Energy Performance of Buildings : A Method using Probabilistic Risk Analysis for Data-driven Decision-support}}, url = {{https://lup.lub.lu.se/search/files/101432154/Tomas_Ekstr_m_WEBB.pdf}}, year = {{2021}}, }