Proposed protective mechanism of the pancreas in the rat
(2010) In Journal of Inflammation 7.- Abstract
- Background: Heparan sulphate is known to have various functions in the animal body, including surveillance of tissue integrity. Administered intraperitoneally, it induces a systemic inflammatory response syndrome and when given locally in the pancreas it initiates a protective inflammatory response. The aim of the present study was to investigate the underlying mechanisms behind cell recruitment following intra-ductal infusion of heparan sulphate. Methods: Rats were subjected to intraductal-infusion of heparan sulphate, lipopolysaccharide and phosphate buffered saline into the pancreas. Pancreatic tissue was harvested 1, 3, 6, 9 or 48 hours after infusion and stained immunohistochemically for myeloperoxidase, ED-1, CINC-1 and MCP-1, as... (More)
- Background: Heparan sulphate is known to have various functions in the animal body, including surveillance of tissue integrity. Administered intraperitoneally, it induces a systemic inflammatory response syndrome and when given locally in the pancreas it initiates a protective inflammatory response. The aim of the present study was to investigate the underlying mechanisms behind cell recruitment following intra-ductal infusion of heparan sulphate. Methods: Rats were subjected to intraductal-infusion of heparan sulphate, lipopolysaccharide and phosphate buffered saline into the pancreas. Pancreatic tissue was harvested 1, 3, 6, 9 or 48 hours after infusion and stained immunohistochemically for myeloperoxidase, ED-1, CINC-1 and MCP-1, as well as using eosin hematoxylin staining. Furthermore, MPO activity and MCP-1 and CINC-1 concentrations of tissue homogenates were measured. All differences were analyzed statistically using the Mann-Whitney U-test. Results: During HS infusion, a rapid influx of macrophages/monocytes, as visualized as ED-1 positive cells, was seen reaching a maximum at 6 hours. After 48 hours, the same levels of ED-1 positive cells were noted in the pancreatic tissue, but with different location and morphology. Increased neutrophil numbers of heparan sulphate treated animals compared to control could be detected only 9 hours after infusion. The number of neutrophils was lower than the number of ED-1 positive cells. On the contrary, LPS infusion caused increased neutrophil numbers to a larger extent than heparan sulphate. Furthermore, this accumulation of neutrophils preceded the infiltration of ED-1 positive cells. Chemokine expression correlates very well to the cell infiltrate. MCP-1 was evident in the ductal cells of both groups early on. MCP-1 preceded monocyte infiltration in both groups, while the CINC-1 increase was only noticeable in the LPS group. Conclusions: Our data suggest that heparan and LPS both induce host defense reactions, though by using different mechanisms of cell-recruitment. This implies that the etiology of pancreatic inflammation may influence how the subsequent events will develop. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/1629081
- author
- Axelsson, Jakob B LU ; Akbarshahi, Hamid LU ; Said Hilmersson, Katarzyna LU ; Malmström, Anders LU and Andersson, Roland LU
- organization
- publishing date
- 2010
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Journal of Inflammation
- volume
- 7
- publisher
- BioMed Central (BMC)
- external identifiers
-
- wos:000279246500003
- scopus:77952260864
- pmid:20482799
- ISSN
- 1476-9255
- DOI
- 10.1186/1476-9255-7-24
- language
- English
- LU publication?
- yes
- id
- d58e17a3-52ea-4fba-9591-740a29cbf50e (old id 1629081)
- date added to LUP
- 2016-04-01 14:09:13
- date last changed
- 2022-01-27 23:01:22
@article{d58e17a3-52ea-4fba-9591-740a29cbf50e, abstract = {{Background: Heparan sulphate is known to have various functions in the animal body, including surveillance of tissue integrity. Administered intraperitoneally, it induces a systemic inflammatory response syndrome and when given locally in the pancreas it initiates a protective inflammatory response. The aim of the present study was to investigate the underlying mechanisms behind cell recruitment following intra-ductal infusion of heparan sulphate. Methods: Rats were subjected to intraductal-infusion of heparan sulphate, lipopolysaccharide and phosphate buffered saline into the pancreas. Pancreatic tissue was harvested 1, 3, 6, 9 or 48 hours after infusion and stained immunohistochemically for myeloperoxidase, ED-1, CINC-1 and MCP-1, as well as using eosin hematoxylin staining. Furthermore, MPO activity and MCP-1 and CINC-1 concentrations of tissue homogenates were measured. All differences were analyzed statistically using the Mann-Whitney U-test. Results: During HS infusion, a rapid influx of macrophages/monocytes, as visualized as ED-1 positive cells, was seen reaching a maximum at 6 hours. After 48 hours, the same levels of ED-1 positive cells were noted in the pancreatic tissue, but with different location and morphology. Increased neutrophil numbers of heparan sulphate treated animals compared to control could be detected only 9 hours after infusion. The number of neutrophils was lower than the number of ED-1 positive cells. On the contrary, LPS infusion caused increased neutrophil numbers to a larger extent than heparan sulphate. Furthermore, this accumulation of neutrophils preceded the infiltration of ED-1 positive cells. Chemokine expression correlates very well to the cell infiltrate. MCP-1 was evident in the ductal cells of both groups early on. MCP-1 preceded monocyte infiltration in both groups, while the CINC-1 increase was only noticeable in the LPS group. Conclusions: Our data suggest that heparan and LPS both induce host defense reactions, though by using different mechanisms of cell-recruitment. This implies that the etiology of pancreatic inflammation may influence how the subsequent events will develop.}}, author = {{Axelsson, Jakob B and Akbarshahi, Hamid and Said Hilmersson, Katarzyna and Malmström, Anders and Andersson, Roland}}, issn = {{1476-9255}}, language = {{eng}}, publisher = {{BioMed Central (BMC)}}, series = {{Journal of Inflammation}}, title = {{Proposed protective mechanism of the pancreas in the rat}}, url = {{http://dx.doi.org/10.1186/1476-9255-7-24}}, doi = {{10.1186/1476-9255-7-24}}, volume = {{7}}, year = {{2010}}, }