Advanced

Measurement of the inclusive isolated prompt photon cross-section in pp collisions at root s=7 TeV using 35 pb(-1) of ATLAS data

Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H. and Abreu, H., et al. (2011) In Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics 706(2-3). p.150-167
Abstract
A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy root s = 7 TeV is presented. The measurement covers the pseudorapidity ranges vertical bar eta vertical bar < 1.37 and 1.52 <= vertical bar eta vertical bar < 2.37 in the transverse energy range 45 <= E(T) < 400 GeV. The results are based on an integrated luminosity of 35 pb(-1), collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with... (More)
A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy root s = 7 TeV is presented. The measurement covers the pseudorapidity ranges vertical bar eta vertical bar < 1.37 and 1.52 <= vertical bar eta vertical bar < 2.37 in the transverse energy range 45 <= E(T) < 400 GeV. The results are based on an integrated luminosity of 35 pb(-1), collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section. (C) 2011 CERN. Published by Elsevier B.V. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
, et al. (More)