Covariance Analysis, Positivity and the Yakubovich-Kalman-Popov Lemma
(2000) 4. p.3363-3368- Abstract
- This paper presents theory and algorithms for covariance analysis and stochastic realization without any minimality condition imposed. Also without any minimality conditions, we show that several properties of covariance factorization and positive realness hold. The results are significant for validation in system identification of state-space models from finite input-output sequences. Using the Riccati equation, we have designed a procedure to provide a reduced-order stochastic model that is minimal with respect to system order as well as the number of stochastic inputs thereby avoiding several problems appearing in standard application of stochastic realization to the model validation problem. The case considered includes the problem of... (More)
- This paper presents theory and algorithms for covariance analysis and stochastic realization without any minimality condition imposed. Also without any minimality conditions, we show that several properties of covariance factorization and positive realness hold. The results are significant for validation in system identification of state-space models from finite input-output sequences. Using the Riccati equation, we have designed a procedure to provide a reduced-order stochastic model that is minimal with respect to system order as well as the number of stochastic inputs thereby avoiding several problems appearing in standard application of stochastic realization to the model validation problem. The case considered includes the problem of rank-deficient residual covariance matrices, a case which is encountered in applications with mixed stochastic-deterministic input-output properties as well as for cases where outputs are linearly dependent,thus extending previous results in covariance analysis. (Less)
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/538060
- author
- Johansson, Rolf LU and Robertsson, Anders LU
- organization
- publishing date
- 2000
- type
- Chapter in Book/Report/Conference proceeding
- publication status
- published
- subject
- keywords
- state-space methods, identification, covariance analysis, Popov criterion, Riccati equations
- host publication
- Proceedings of the 39th IEEE Conference on Decision and Control, 2000.
- volume
- 4
- pages
- 3363 - 3368
- publisher
- IEEE - Institute of Electrical and Electronics Engineers Inc.
- external identifiers
-
- scopus:0034440319
- ISBN
- 0-7803-6638-7
- DOI
- 10.1109/CDC.2000.912222
- language
- English
- LU publication?
- yes
- id
- e1ac421f-6b0c-427f-9773-e6038f8e1346 (old id 538060)
- date added to LUP
- 2016-04-04 09:57:20
- date last changed
- 2022-01-29 19:32:04
@inproceedings{e1ac421f-6b0c-427f-9773-e6038f8e1346, abstract = {{This paper presents theory and algorithms for covariance analysis and stochastic realization without any minimality condition imposed. Also without any minimality conditions, we show that several properties of covariance factorization and positive realness hold. The results are significant for validation in system identification of state-space models from finite input-output sequences. Using the Riccati equation, we have designed a procedure to provide a reduced-order stochastic model that is minimal with respect to system order as well as the number of stochastic inputs thereby avoiding several problems appearing in standard application of stochastic realization to the model validation problem. The case considered includes the problem of rank-deficient residual covariance matrices, a case which is encountered in applications with mixed stochastic-deterministic input-output properties as well as for cases where outputs are linearly dependent,thus extending previous results in covariance analysis.}}, author = {{Johansson, Rolf and Robertsson, Anders}}, booktitle = {{Proceedings of the 39th IEEE Conference on Decision and Control, 2000.}}, isbn = {{0-7803-6638-7}}, keywords = {{state-space methods; identification; covariance analysis; Popov criterion; Riccati equations}}, language = {{eng}}, pages = {{3363--3368}}, publisher = {{IEEE - Institute of Electrical and Electronics Engineers Inc.}}, title = {{Covariance Analysis, Positivity and the Yakubovich-Kalman-Popov Lemma}}, url = {{https://lup.lub.lu.se/search/files/5425559/625740.pdf}}, doi = {{10.1109/CDC.2000.912222}}, volume = {{4}}, year = {{2000}}, }