Effects of cleaning spray use on eyes, airways, and ergonomic load
(2023) In BMC Public Health 23(1). p.1-17- Abstract
BACKGROUND: Cleaning workers are exposed to chemicals and high physical workload, commonly resulting in airway problems and pain. In this study the response in the upper airways and the physical workload following airborne and ergonomic exposure of cleaning spray was investigated.
METHODS: A survey was answered by professional cleaning workers to investigate their use of cleaning sprays and the perceived effects on eyes, airways and musculoskeletal pain. A human chamber exposure study was then conducted with 11 professional cleaning workers and 8 non-professional cleaning workers to investigate the airborne exposure, acute effects on eyes and airways, and physical load during cleaning with sprays, foam application and microfiber... (More)
BACKGROUND: Cleaning workers are exposed to chemicals and high physical workload, commonly resulting in airway problems and pain. In this study the response in the upper airways and the physical workload following airborne and ergonomic exposure of cleaning spray was investigated.
METHODS: A survey was answered by professional cleaning workers to investigate their use of cleaning sprays and the perceived effects on eyes, airways and musculoskeletal pain. A human chamber exposure study was then conducted with 11 professional cleaning workers and 8 non-professional cleaning workers to investigate the airborne exposure, acute effects on eyes and airways, and physical load during cleaning with sprays, foam application and microfiber cloths premoistened with water. All cleaning products used were bleach, chlorine, and ammonia free. The medical assessment included eye and airway parameters, inflammatory markers in blood and nasal lavage, as well as technical recordings of the physical workload.
RESULTS: A high frequency of spray use (77%) was found among the 225 professional cleaning workers that answered the survey. Based on the survey, there was an eight times higher risk (p < 0.001) of self-experienced symptoms (including symptoms in the nose, eyes and throat, coughing or difficulty breathing) when they used sprays compared to when they cleaned with other methods. During the chamber study, when switching from spray to foam, the airborne particle and volatile organic compound (VOC) concentrations showed a decrease by 7 and 2.5 times, respectively. For the whole group, the peak nasal inspiratory flow decreased (-10.9 L/min, p = 0.01) during spray use compared to using only water-premoistened microfiber cloths. These effects were lower during foam use (-4.7 L/min, p = 0.19). The technical recordings showed a high physical workload regardless of cleaning with spray or with water.
CONCLUSION: Switching from a spraying to a foaming nozzle decreases the exposure of both airborne particles and VOCs, and thereby reduces eye and airway effects, and does not increase the ergonomic load. If the use of cleaning products tested in this study, i.e. bleach, chlorine, and ammonia free, cannot be avoided, foam application is preferable to spray application to improve the occupational environment.
(Less)
- author
- Lovén, Karin LU ; Gudmundsson, Anders LU ; Assarsson, Eva LU ; Kåredal, Monica LU ; Wierzbicka, Aneta LU ; Dahlqvist, Camilla LU ; Nordander, Catarina LU ; Xu, Yiyi LU and Isaxon, Christina LU
- organization
-
- Environmental health and occupational health (research group)
- Division of Occupational and Environmental Medicine, Lund University
- Ergonomics and Aerosol Technology
- LTH Profile Area: Aerosols
- Metalund
- NanoLund: Centre for Nanoscience
- Genetic Occupational and Environmental Medicine (research group)
- EpiHealth: Epidemiology for Health
- Centre for Healthy Indoor Environments
- Work-related musculoskeletal disorders (research group)
- publishing date
- 2023-01-13
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- Occupational exposure, Aerosol, Survey, Symptoms, PNF, BUT, Exposure/adverse effects, Humans
- in
- BMC Public Health
- volume
- 23
- issue
- 1
- article number
- 99
- pages
- 17 pages
- publisher
- BioMed Central (BMC)
- external identifiers
-
- pmid:36639638
- scopus:85146276783
- ISSN
- 1471-2458
- DOI
- 10.1186/s12889-022-14954-4
- language
- English
- LU publication?
- yes
- id
- c22441f9-0c7c-4d1c-8670-f78e22537257
- date added to LUP
- 2023-01-27 14:13:33
- date last changed
- 2024-10-27 23:34:00
@article{c22441f9-0c7c-4d1c-8670-f78e22537257, abstract = {{<p>BACKGROUND: Cleaning workers are exposed to chemicals and high physical workload, commonly resulting in airway problems and pain. In this study the response in the upper airways and the physical workload following airborne and ergonomic exposure of cleaning spray was investigated.</p><p>METHODS: A survey was answered by professional cleaning workers to investigate their use of cleaning sprays and the perceived effects on eyes, airways and musculoskeletal pain. A human chamber exposure study was then conducted with 11 professional cleaning workers and 8 non-professional cleaning workers to investigate the airborne exposure, acute effects on eyes and airways, and physical load during cleaning with sprays, foam application and microfiber cloths premoistened with water. All cleaning products used were bleach, chlorine, and ammonia free. The medical assessment included eye and airway parameters, inflammatory markers in blood and nasal lavage, as well as technical recordings of the physical workload.</p><p>RESULTS: A high frequency of spray use (77%) was found among the 225 professional cleaning workers that answered the survey. Based on the survey, there was an eight times higher risk (p < 0.001) of self-experienced symptoms (including symptoms in the nose, eyes and throat, coughing or difficulty breathing) when they used sprays compared to when they cleaned with other methods. During the chamber study, when switching from spray to foam, the airborne particle and volatile organic compound (VOC) concentrations showed a decrease by 7 and 2.5 times, respectively. For the whole group, the peak nasal inspiratory flow decreased (-10.9 L/min, p = 0.01) during spray use compared to using only water-premoistened microfiber cloths. These effects were lower during foam use (-4.7 L/min, p = 0.19). The technical recordings showed a high physical workload regardless of cleaning with spray or with water.</p><p>CONCLUSION: Switching from a spraying to a foaming nozzle decreases the exposure of both airborne particles and VOCs, and thereby reduces eye and airway effects, and does not increase the ergonomic load. If the use of cleaning products tested in this study, i.e. bleach, chlorine, and ammonia free, cannot be avoided, foam application is preferable to spray application to improve the occupational environment.</p>}}, author = {{Lovén, Karin and Gudmundsson, Anders and Assarsson, Eva and Kåredal, Monica and Wierzbicka, Aneta and Dahlqvist, Camilla and Nordander, Catarina and Xu, Yiyi and Isaxon, Christina}}, issn = {{1471-2458}}, keywords = {{Occupational exposure; Aerosol; Survey; Symptoms; PNF; BUT; Exposure/adverse effects; Humans}}, language = {{eng}}, month = {{01}}, number = {{1}}, pages = {{1--17}}, publisher = {{BioMed Central (BMC)}}, series = {{BMC Public Health}}, title = {{Effects of cleaning spray use on eyes, airways, and ergonomic load}}, url = {{http://dx.doi.org/10.1186/s12889-022-14954-4}}, doi = {{10.1186/s12889-022-14954-4}}, volume = {{23}}, year = {{2023}}, }