Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Association of circulating MicroRNA-124-3p levels with outcomes after out-of-hospital cardiac arrest : A substudy of a randomized clinical trial

Devaux, Yvan ; Dankiewicz, Josef LU orcid ; Salgado-Somoza, Antonio ; Stammet, Pascal ; Collignon, Olivier ; Gilje, Patrik LU ; Gidlöf, Olof LU ; Zhang, Lu Lu ; Vausort, Mélanie and Hassager, Christian , et al. (2016) In JAMA Cardiology 1(3). p.305-313
Abstract

IMPORTANCE: The value of microRNAs (miRNAs) as biomarkers has been investigated in various clinical contexts. Initial small-scale studies suggested that miRNAs might be useful indicators of outcome after cardiac arrest. OBJECTIVE: To address the prognostic value of circulating miRNAs in a large cohort of comatose patients with out-of-hospital cardiac arrest. DESIGN, SETTING, AND PARTICIPANTS: This substudy of the Target Temperature Management After Cardiac Arrest (TTM) trial, a multicenter randomized, parallel-group, assessor-blinded clinical trial, compared the 6-month neurologic outcomes and survival of patients with cardiac arrest after targeted temperature management at 33°C or 36°C. Five hundred seventy-nine patients who survived... (More)

IMPORTANCE: The value of microRNAs (miRNAs) as biomarkers has been investigated in various clinical contexts. Initial small-scale studies suggested that miRNAs might be useful indicators of outcome after cardiac arrest. OBJECTIVE: To address the prognostic value of circulating miRNAs in a large cohort of comatose patients with out-of-hospital cardiac arrest. DESIGN, SETTING, AND PARTICIPANTS: This substudy of the Target Temperature Management After Cardiac Arrest (TTM) trial, a multicenter randomized, parallel-group, assessor-blinded clinical trial, compared the 6-month neurologic outcomes and survival of patients with cardiac arrest after targeted temperature management at 33°C or 36°C. Five hundred seventy-nine patients who survived the first 24 hours after the return of spontaneous circulation and who had blood samples available for miRNA assessment were enrolled from 29 intensive care units in 9 countries from November 11, 2010, to January 10, 2013. Final follow-up was completed on July 3, 2013, and data were assessed from February 1, 2014, to February 1, 2016. INTERVENTIONS: Blood sampling at 48 hours after the return of spontaneous circulation. MAINOUTCOMES AND MEASURES: The primary end point was poor neurologic outcomeat6 months (cerebral performance category score, 3 [severe neurologic sequelae], 4 [coma], or 5 [death]). The secondary end point was survival until the end of the trial. Circulating levels of miRNAs were measured by sequencing and polymerase chain reaction. RESULTS: Of the 579 patients (265 men [80.3%]; mean [SD] age, 63 [12] years), 304 patients (52.5%) hada poor neurologic outcomeat 6months. Inthe discovery phase with short RNA sequencing in 50 patients, the brain-enriched miR-124-3p level was identified as a candidate prognostic variable for neurologic outcomes. In the validation cohort of 529 patients, mean (SD) levels of miR-124-3p were higher in patients with a poor outcome (8408 [12 465] copies/μL) compared with patients with a good outcome (1842 [3025] copies/μL; P < .001). The miR-124-3p level was significantly associated with neurologic outcomes in the univariable analysis (odds ratio, 6.72; 95% CI, 4.53-9.97). In multivariable analyses using logistic regression, miR-124-3p levels were independently associated with neurologic outcomes (odds ratio, 1.62; 95% CI, 1.13-2.32). In Cox proportional hazards models, higher levels of miR-124-3p were significantly associated with lower survival (hazard ratio, 1.63; 95% CI, 1.37-1.93). CONCLUSIONS AND RELEVANCE: Levels of miR-124-3p can be used as prognostication tools for neurologic outcome and survival after out-of-hospital cardiac arrest. Thus, miRNA levels may aid in tailoring health care for patients with cardiac arrest.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
JAMA Cardiology
volume
1
issue
3
pages
305 - 313
publisher
American Medical Association
external identifiers
  • scopus:84991292595
  • pmid:27438111
  • wos:000401872300013
ISSN
2380-6583
DOI
10.1001/jamacardio.2016.0480
language
English
LU publication?
yes
id
c4a4d334-f22b-4032-b73c-4390ff9acc6c
date added to LUP
2017-08-14 11:36:36
date last changed
2024-02-29 19:50:13
@article{c4a4d334-f22b-4032-b73c-4390ff9acc6c,
  abstract     = {{<p>IMPORTANCE: The value of microRNAs (miRNAs) as biomarkers has been investigated in various clinical contexts. Initial small-scale studies suggested that miRNAs might be useful indicators of outcome after cardiac arrest. OBJECTIVE: To address the prognostic value of circulating miRNAs in a large cohort of comatose patients with out-of-hospital cardiac arrest. DESIGN, SETTING, AND PARTICIPANTS: This substudy of the Target Temperature Management After Cardiac Arrest (TTM) trial, a multicenter randomized, parallel-group, assessor-blinded clinical trial, compared the 6-month neurologic outcomes and survival of patients with cardiac arrest after targeted temperature management at 33°C or 36°C. Five hundred seventy-nine patients who survived the first 24 hours after the return of spontaneous circulation and who had blood samples available for miRNA assessment were enrolled from 29 intensive care units in 9 countries from November 11, 2010, to January 10, 2013. Final follow-up was completed on July 3, 2013, and data were assessed from February 1, 2014, to February 1, 2016. INTERVENTIONS: Blood sampling at 48 hours after the return of spontaneous circulation. MAINOUTCOMES AND MEASURES: The primary end point was poor neurologic outcomeat6 months (cerebral performance category score, 3 [severe neurologic sequelae], 4 [coma], or 5 [death]). The secondary end point was survival until the end of the trial. Circulating levels of miRNAs were measured by sequencing and polymerase chain reaction. RESULTS: Of the 579 patients (265 men [80.3%]; mean [SD] age, 63 [12] years), 304 patients (52.5%) hada poor neurologic outcomeat 6months. Inthe discovery phase with short RNA sequencing in 50 patients, the brain-enriched miR-124-3p level was identified as a candidate prognostic variable for neurologic outcomes. In the validation cohort of 529 patients, mean (SD) levels of miR-124-3p were higher in patients with a poor outcome (8408 [12 465] copies/μL) compared with patients with a good outcome (1842 [3025] copies/μL; P &lt; .001). The miR-124-3p level was significantly associated with neurologic outcomes in the univariable analysis (odds ratio, 6.72; 95% CI, 4.53-9.97). In multivariable analyses using logistic regression, miR-124-3p levels were independently associated with neurologic outcomes (odds ratio, 1.62; 95% CI, 1.13-2.32). In Cox proportional hazards models, higher levels of miR-124-3p were significantly associated with lower survival (hazard ratio, 1.63; 95% CI, 1.37-1.93). CONCLUSIONS AND RELEVANCE: Levels of miR-124-3p can be used as prognostication tools for neurologic outcome and survival after out-of-hospital cardiac arrest. Thus, miRNA levels may aid in tailoring health care for patients with cardiac arrest.</p>}},
  author       = {{Devaux, Yvan and Dankiewicz, Josef and Salgado-Somoza, Antonio and Stammet, Pascal and Collignon, Olivier and Gilje, Patrik and Gidlöf, Olof and Zhang, Lu Lu and Vausort, Mélanie and Hassager, Christian and Wise, Matthew P and Kuiper, Michael and Friberg, Hans and Cronberg, Tobias and Erlinge, David and Nielsen, Niklas}},
  issn         = {{2380-6583}},
  language     = {{eng}},
  month        = {{06}},
  number       = {{3}},
  pages        = {{305--313}},
  publisher    = {{American Medical Association}},
  series       = {{JAMA Cardiology}},
  title        = {{Association of circulating MicroRNA-124-3p levels with outcomes after out-of-hospital cardiac arrest : A substudy of a randomized clinical trial}},
  url          = {{http://dx.doi.org/10.1001/jamacardio.2016.0480}},
  doi          = {{10.1001/jamacardio.2016.0480}},
  volume       = {{1}},
  year         = {{2016}},
}