Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

Aad, G. ; Åkesson, T.P.A. LU orcid ; Corrigan, E.E. LU ; Doglioni, C. LU ; Ekman, P.A. LU ; Geisen, J. LU orcid ; Hedberg, V. LU ; Jarlskog, G. LU ; Konya, B. LU and Lytken, E. LU orcid , et al. (2023) In Physical Review C 107(5).
Abstract
The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon–nucleon center-of-mass energy √sNN = 5.02 TeV in comparison with proton–proton (pp) collisions at √s = 5.02 TeV. The Pb+Pb data, collected in 2018, have an integrated luminosity of 1.72 nb−1, while the ppdata, collected in 2017, have an integrated luminosity of 260 pb−1. Jets used in this analysis are clustered using the anti-kt algorithm with a radius parameter R = 0.4. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale rg of the first hard splitting inside the jet by reclustering them using the Cambridge–Aachen algorithm and... (More)
The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon–nucleon center-of-mass energy √sNN = 5.02 TeV in comparison with proton–proton (pp) collisions at √s = 5.02 TeV. The Pb+Pb data, collected in 2018, have an integrated luminosity of 1.72 nb−1, while the ppdata, collected in 2017, have an integrated luminosity of 260 pb−1. Jets used in this analysis are clustered using the anti-kt algorithm with a radius parameter R = 0.4. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale rg of the first hard splitting inside the jet by reclustering them using the Cambridge–Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, RAA, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in rg, jet transverse momentum, and in intervals of collision centrality. The RAA value is observed to depend significantly on jet rg. Jets produced with the largest measured rg are found to be twice as suppressed as those with the smallest rg in central Pb+Pb collisions. The RAA values do not exhibit a strong variation with jet pT in any of the rg intervals. The rg and pT dependence of jet RAA is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach. © 2023 CERN, for the ATLAS Collaboration. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physical Review C
volume
107
issue
5
article number
e054909
publisher
American Physical Society
external identifiers
  • scopus:85166543312
ISSN
2469-9985
DOI
10.1103/PhysRevC.107.054909
language
English
LU publication?
yes
id
17527f0b-5f04-4b65-87be-f4f48a147682
date added to LUP
2023-12-22 15:51:42
date last changed
2024-01-24 13:28:52
@article{17527f0b-5f04-4b65-87be-f4f48a147682,
  abstract     = {{The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon–nucleon center-of-mass energy √sNN = 5.02 TeV in comparison with proton–proton (pp) collisions at √s = 5.02 TeV. The Pb+Pb data, collected in 2018, have an integrated luminosity of 1.72 nb−1, while the ppdata, collected in 2017, have an integrated luminosity of 260 pb−1. Jets used in this analysis are clustered using the anti-kt algorithm with a radius parameter R = 0.4. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale rg of the first hard splitting inside the jet by reclustering them using the Cambridge–Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, RAA, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in rg, jet transverse momentum, and in intervals of collision centrality. The RAA value is observed to depend significantly on jet rg. Jets produced with the largest measured rg are found to be twice as suppressed as those with the smallest rg in central Pb+Pb collisions. The RAA values do not exhibit a strong variation with jet pT in any of the rg intervals. The rg and pT dependence of jet RAA is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach. © 2023 CERN, for the ATLAS Collaboration.}},
  author       = {{Aad, G. and Åkesson, T.P.A. and Corrigan, E.E. and Doglioni, C. and Ekman, P.A. and Geisen, J. and Hedberg, V. and Jarlskog, G. and Konya, B. and Lytken, E. and Mankinen, K.H. and Mjörnmark, J.U. and Mullier, G.A. and Poettgen, R. and Simpson, N.D. and Skorda, E. and Smirnova, O. and Zwalinski, L.}},
  issn         = {{2469-9985}},
  language     = {{eng}},
  number       = {{5}},
  publisher    = {{American Physical Society}},
  series       = {{Physical Review C}},
  title        = {{Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector}},
  url          = {{http://dx.doi.org/10.1103/PhysRevC.107.054909}},
  doi          = {{10.1103/PhysRevC.107.054909}},
  volume       = {{107}},
  year         = {{2023}},
}