Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Measurement of top-quark pair production in association with charm quarks in proton–proton collisions at s=13 TeV with the ATLAS detector

Aad, G. ; Åkesson, T.P.A. LU orcid ; Astrand, K.S.V. LU ; Doglioni, C. LU ; Ekman, P.A. LU orcid ; Hedberg, V. LU ; Herde, H. LU orcid ; Konya, B. LU ; Lytken, E. LU orcid and Poettgen, R. LU orcid , et al. (2025) In Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 860.
Abstract
Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton–proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb−1, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two b-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of b-jets and c-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for tt¯+≥2c and tt¯+1c production are measured to be 1.28−0.24+0.27pb and... (More)
Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton–proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb−1, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two b-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of b-jets and c-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for tt¯+≥2c and tt¯+1c production are measured to be 1.28−0.24+0.27pb and 6.4−0.9+1.0pb, respectively. The measurements are primarily limited by uncertainties in the modeling of inclusive tt¯ and tt¯+bb¯ production, in the calibration of the flavor-tagging algorithm, and by data statistics. Cross-section predictions from various tt¯ simulations are largely consistent with the measured cross-section values, though all underpredict the observed values by 0.5 to 2.0 standard deviations. In a phase-space volume without requirements on the tt¯ decay products and the jet multiplicity, the cross-section ratios of tt¯+≥2c and tt¯+1c to total tt¯+jets production are determined to be (1.23±0.25)% and (8.8±1.3)%. © 2024 CERN for the benefit of the ATLAS Collaboration (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
volume
860
article number
139177
publisher
Elsevier
external identifiers
  • scopus:85211336127
ISSN
0370-2693
DOI
10.1016/j.physletb.2024.139177
language
English
LU publication?
yes
id
1df26426-ab38-4f6c-b4a4-db20421775aa
date added to LUP
2025-12-03 10:46:13
date last changed
2025-12-03 10:46:53
@article{1df26426-ab38-4f6c-b4a4-db20421775aa,
  abstract     = {{Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton–proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb−1, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two b-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of b-jets and c-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for tt¯+≥2c and tt¯+1c production are measured to be 1.28−0.24+0.27pb and 6.4−0.9+1.0pb, respectively. The measurements are primarily limited by uncertainties in the modeling of inclusive tt¯ and tt¯+bb¯ production, in the calibration of the flavor-tagging algorithm, and by data statistics. Cross-section predictions from various tt¯ simulations are largely consistent with the measured cross-section values, though all underpredict the observed values by 0.5 to 2.0 standard deviations. In a phase-space volume without requirements on the tt¯ decay products and the jet multiplicity, the cross-section ratios of tt¯+≥2c and tt¯+1c to total tt¯+jets production are determined to be (1.23±0.25)% and (8.8±1.3)%. © 2024 CERN for the benefit of the ATLAS Collaboration}},
  author       = {{Aad, G. and Åkesson, T.P.A. and Astrand, K.S.V. and Doglioni, C. and Ekman, P.A. and Hedberg, V. and Herde, H. and Konya, B. and Lytken, E. and Poettgen, R. and Smirnova, O. and Wallin, E.J. and Zwalinski, L.}},
  issn         = {{0370-2693}},
  language     = {{eng}},
  publisher    = {{Elsevier}},
  series       = {{Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics}},
  title        = {{Measurement of top-quark pair production in association with charm quarks in proton–proton collisions at s=13 TeV with the ATLAS detector}},
  url          = {{http://dx.doi.org/10.1016/j.physletb.2024.139177}},
  doi          = {{10.1016/j.physletb.2024.139177}},
  volume       = {{860}},
  year         = {{2025}},
}