Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Combination of searches for pair-produced leptoquarks at s=13 TeV with the ATLAS detector

Aad, G. ; Åkesson, T.P.A. LU orcid ; Doglioni, C. LU ; Ekman, P.A. LU ; Hedberg, V. LU ; Herde, H. LU orcid ; Konya, B. LU ; Lytken, E. LU orcid ; Poettgen, R. LU orcid and Simpson, N.D. LU , et al. (2024) In Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 854.
Abstract
A statistical combination of various searches for pair-produced leptoquarks is presented, using the full LHC Run 2 (2015–2018) data set of 139 fb−1 collected with the ATLAS detector from proton–proton collisions at a centre-of-mass energy of s=13 TeV. All possible decays of the leptoquarks into quarks of the third generation and charged or neutral leptons of any generation are investigated. Since no significant deviations from the Standard Model expectation are observed in any of the individual analyses, combined exclusion limits are set on the production cross-sections for scalar and vector leptoquarks. The resulting lower bounds on leptoquark masses exceed those from the individual analyses by up to 100 GeV, depending on the signal... (More)
A statistical combination of various searches for pair-produced leptoquarks is presented, using the full LHC Run 2 (2015–2018) data set of 139 fb−1 collected with the ATLAS detector from proton–proton collisions at a centre-of-mass energy of s=13 TeV. All possible decays of the leptoquarks into quarks of the third generation and charged or neutral leptons of any generation are investigated. Since no significant deviations from the Standard Model expectation are observed in any of the individual analyses, combined exclusion limits are set on the production cross-sections for scalar and vector leptoquarks. The resulting lower bounds on leptoquark masses exceed those from the individual analyses by up to 100 GeV, depending on the signal hypothesis. © 2024 The Author(s) (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
volume
854
article number
138736
publisher
Elsevier
external identifiers
  • scopus:85194415100
ISSN
0370-2693
DOI
10.1016/j.physletb.2024.138736
language
English
LU publication?
yes
id
804b7f1c-45f6-4959-bcd1-65dff687befb
date added to LUP
2024-08-29 11:28:30
date last changed
2024-08-29 11:29:40
@article{804b7f1c-45f6-4959-bcd1-65dff687befb,
  abstract     = {{A statistical combination of various searches for pair-produced leptoquarks is presented, using the full LHC Run 2 (2015–2018) data set of 139 fb−1 collected with the ATLAS detector from proton–proton collisions at a centre-of-mass energy of s=13 TeV. All possible decays of the leptoquarks into quarks of the third generation and charged or neutral leptons of any generation are investigated. Since no significant deviations from the Standard Model expectation are observed in any of the individual analyses, combined exclusion limits are set on the production cross-sections for scalar and vector leptoquarks. The resulting lower bounds on leptoquark masses exceed those from the individual analyses by up to 100 GeV, depending on the signal hypothesis. © 2024 The Author(s)}},
  author       = {{Aad, G. and Åkesson, T.P.A. and Doglioni, C. and Ekman, P.A. and Hedberg, V. and Herde, H. and Konya, B. and Lytken, E. and Poettgen, R. and Simpson, N.D. and Smirnova, O. and Wallin, E.J. and Zwalinski, L.}},
  issn         = {{0370-2693}},
  language     = {{eng}},
  publisher    = {{Elsevier}},
  series       = {{Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics}},
  title        = {{Combination of searches for pair-produced leptoquarks at s=13 TeV with the ATLAS detector}},
  url          = {{http://dx.doi.org/10.1016/j.physletb.2024.138736}},
  doi          = {{10.1016/j.physletb.2024.138736}},
  volume       = {{854}},
  year         = {{2024}},
}