Advanced

Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector.

Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H and Abreu, R, et al. (2016) In European Physical Journal C. Particles and Fields 76.
Abstract
A search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton-proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb[Formula: see text] are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the [Formula: see text] branching fraction is set. The observed 95 % CL limit is [Formula: see text] and the expected 95 % CL... (More)
A search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton-proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb[Formula: see text] are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the [Formula: see text] branching fraction is set. The observed 95 % CL limit is [Formula: see text] and the expected 95 % CL limit is [Formula: see text]. The observed limit can be interpreted as upper limits on the coupling constants of the flavour-changing neutral current interactions divided by the scale of new physics [Formula: see text] and [Formula: see text] and on the branching fractions [Formula: see text] and [Formula: see text]. (Less)
Please use this url to cite or link to this publication:
author
, et al. (More)